Bridging materials innovations to sorption-based atmospheric water harvesting devices

Humphrey, J. H. et al. The potential for atmospheric water harvesting to accelerate household access to safe water. Lancet Planet. Health 4, e91–e92 (2020).

Article  PubMed  Google Scholar 

Cotruvo, J. A. 2017 WHO guidelines for drinking water quality: first addendum to the fourth edition. J. Am. Water Work. Assoc. 109, 44–51 (2017).

Article  Google Scholar 

UNESCO. The United Nations world water development report 2023: partnerships and cooperation for water. UN-Water https://www.unwater.org/publications/un-world-water-development-report-2023 (2023).

Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, L. et al. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

Article  CAS  Google Scholar 

Tu, Y., Wang, R., Zhang, Y. & Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475 (2018).

Article  CAS  Google Scholar 

Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

Article  CAS  PubMed  Google Scholar 

Kümmerer, K., Dionysiou, D. D., Olsson, O. & Fatta-Kassinos, D. A path to clean water. Science 361, 222–224 (2018).

Article  PubMed  Google Scholar 

Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

Article  CAS  PubMed  Google Scholar 

Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

Article  CAS  PubMed  Google Scholar 

Suguro, T. et al. A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting. Nat. Commun. 13, 5698 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, J. et al. Hydrogen production from the air. Nat. Commun. 13, 5046 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tatsidjodoung, P., Le Pierrès, N. & Luo, L. A review of potential materials for thermal energy storage in building applications. Renew. Sustain. Energy Rev. 18, 327–349 (2013).

Article  Google Scholar 

Narayanan, S. et al. Thermal battery for portable climate control. Appl. Energy 149, 104–116 (2015).

Article  Google Scholar 

Gordeeva, L. G. et al. Metal-organic frameworks for energy conversion and water harvesting: a bridge between thermal engineering and material science. Nano Energy 84, 105946 (2021).

Article  CAS  Google Scholar 

Liu, X. et al. Unusual temperature dependence of water sorption in semicrystalline hydrogels. Adv. Mater. 35, 2211763 (2023).

Article  CAS  Google Scholar 

Poredoš, P. & Wang, R. Sustainable cooling with water generation. Science 380, 458–460 (2023).

Article  PubMed  Google Scholar 

Poredoš, P., Shan, H. & Wang, R. Dehumidification with solid hygroscopic sorbents for low-carbon air conditioning. Joule 6, 1390–1393 (2022).

Article  Google Scholar 

Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

Article  CAS  PubMed  Google Scholar 

Xu, W. & Yaghi, O. M. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent. Sci. 6, 1348–1354 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

LaPotin, A. et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5, 166–182 (2021).

Article  CAS  Google Scholar 

Lord, J. et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Xu, J. et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 14, 5979–5994 (2021).

Article  CAS  Google Scholar 

Li, R. et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 52, 11367–11377 (2018).

Article  CAS  PubMed  Google Scholar 

Shan, H. et al. Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate. Nat. Commun. 13, 5406 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanikel, N. et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 374, 454–459 (2021).

Article  CAS  PubMed  Google Scholar 

Burtch, N. C. et al. In situ visualization of loading-dependent water effects in a stable metal–organic framework. Nat. Chem. 12, 186–192 (2020).

Article  CAS  PubMed  Google Scholar 

Yang, K. et al. A roadmap to sorption-based atmospheric water harvesting: from molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol. 55, 6542–6560 (2021).

Article  CAS  PubMed  Google Scholar 

Kalmutzki, M. J., Diercks, C. S. & Yaghi, O. M. Metal–organic frameworks for water harvesting from air. Adv. Mater. 30, 1704304 (2018).

Article  Google Scholar 

Ball, P. C. & Evans, R. Temperature dependence of gas adsorption on a mesoporous solid: capillary criticality and hysteresis. Langmuir 5, 714–723 (1989).

Article  CAS  Google Scholar 

Morishige, K., Fujii, H., Uga, M. & Kinukawa, D. Capillary critical point of argon, nitrogen, oxygen, ethylene, and carbon dioxide in MCM-41. Langmuir 13, 3494–3498 (1997).

Article  CAS  Google Scholar 

Coasne, B., Gubbins, K. E. & Pellenq, R. J.-M. Temperature effect on adsorption/desorption isotherms for a simple fluid confined within various nanopores. Adsorption 11, 289–294 (2005).

Article  Google Scholar 

Furukawa, H. et al. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

Article  CAS  PubMed  Google Scholar 

Lu, H. et al. Materials engineering for atmospheric water harvesting: progress and perspectives. Adv. Mater. 34, 2110079 (2022).

Article  CAS  Google Scholar 

LaPotin, A., Kim, H., Rao, S. R. & Wang, E. N. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52, 1588–1597 (2019).

Article  CAS  PubMed  Google Scholar 

Graeber, G. et al. Extreme water uptake of hygroscopic hydrogels through maximized swelling‐induced salt loading. Adv. Mater. 36, 2211783 (2023).

Article  Google Scholar 

Díaz-Marín, C. D. et al. Kinetics of sorption in hygroscopic hydrogels. Nano Lett. 22, 1100–1107 (2022).

Article  PubMed  Google Scholar 

Zhao, F. et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 31, 1806446 (2019).

Article  Google Scholar 

Chen, G. Thermodynamics of hydrogels for applications in atmospheric water harvesting, evaporation, and desalination. Phys. Chem. Chem. Phys. 24, 12329–12345 (2022).

Article  CAS  PubMed  Google Scholar 

Lu, H. et al. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater. 34, 2205344 (2022).

Article  CAS  Google Scholar 

Aleid, S. et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater. Lett. 4, 511–520 (2022).

Article  CAS  Google Scholar 

Bouklas, N. & Huang, R. Swelling kinetics of polymer gel

留言 (0)

沒有登入
gif