The impact of spectral basis set composition on estimated levels of cingulate glutamate and its associations with different personality traits

Jansen JFA, Backes WH, Nicolay K, Kooi ME. 1 H MR Spectroscopy of the brain: Absolute quantification of metabolites. Radiology. 2006;240(2):318–32.

Article  PubMed  Google Scholar 

van Tebartz L, Maier S, Fangmeier T, Endres D, Mueller GT, Nickel K, et al. Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol Psychiatry. 2014;19(12):1314–25.

Article  Google Scholar 

Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO. Concentrations of cortical GABA and glutamate in young adults with Autism Spectrum Disorder. Autism Res off J Int Soc Autism Res. 2020;13(7):1111–29.

Article  Google Scholar 

Wenneberg C, Glenthøj BY, Hjorthøj C, Buchardt Zingenberg FJ, Glenthøj LB, Rostrup E, et al. Cerebral glutamate and GABA levels in high-risk of psychosis states: a focused review and meta-analysis of 1H-MRS studies. Schizophr Res. 2020;215:38–48.

Article  PubMed  Google Scholar 

Ford TC, Nibbs R, Crewther DP. Glutamate/GABA + ratio is associated with the psychosocial domain of autistic and schizotypal traits. Fatemi SH, editor. PLOS ONE. 2017;12(7):e0181961.

Sydnor VJ, Roalf DR. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: implications for studies of psychosis risk. Schizophr Res. 2020;226:61–9.

Article  PubMed  PubMed Central  Google Scholar 

McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19(1):15–33.

Article  PubMed  PubMed Central  Google Scholar 

Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019;73(5):204–15.

Article  PubMed  Google Scholar 

Modinos G, McLaughlin A, Egerton A, McMullen K, Kumari V, Barker GJ, et al. Corticolimbic hyper-response to emotion and glutamatergic function in people with high schizotypy: a multimodal fMRI-MRS study. Transl Psychiatry. 2017;7(4):e1083–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kozhuharova P, Diaconescu AO, Allen P. Reduced cortical GABA and glutamate in high schizotypy. Psychopharmacology. 2021;238(9):2459–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK. Nature of glutamate alterations in Schizophrenia: a Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. JAMA Psychiatry. 2016;73(7):665–74.

Article  PubMed  Google Scholar 

Sigvard AK, Bojesen KB, Ambrosen KS, Nielsen MØ, Gjedde A, Tangmose K et al. Dopamine synthesis capacity and GABA and glutamate levels separate Antipsychotic-Naïve patients with first-episode psychosis from healthy control subjects in a Multimodal Prediction Model. Biol Psychiatry Glob Open Sci. 2022;S2667174322000659.

Reid MA, Salibi N, White DM, Gawne TJ, Denney TS, Lahti AC. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia. Schizophr Bull. 2019;45(1):180–9.

Article  PubMed  Google Scholar 

Marsman A, van den Heuvel MP, Klomp DWJ, Kahn RS, Luijten PR, Hulshoff Pol HE. Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr Bull. 2013;39(1):120–9.

Article  PubMed  Google Scholar 

Joshi G, Biederman J, Wozniak J, Goldin RL, Crowley D, Furtak S, et al. Magnetic resonance spectroscopy study of the glutamatergic system in adolescent males with high-functioning autistic disorder: a pilot study at 4T. Eur Arch Psychiatry Clin Neurosci. 2013;263(5):379–84.

Article  PubMed  Google Scholar 

Naaijen J, Lythgoe DJ, Amiri H, Buitelaar JK, Glennon JC. Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: a review of magnetic resonance spectroscopy studies. Neurosci Biobehav Rev. 2015;52:74–88.

Article  CAS  PubMed  Google Scholar 

Clarke WT, Stagg CJ, Jbabdi S. FSL-MRS: an end-to-end spectroscopy analysis package. Magn Reson Med. 2021;85(6):2950–64.

Article  CAS  PubMed  Google Scholar 

Edden RAE, Puts NAJ, Harris AD, Barker PB, Evans CJ, Gannet. A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging. 2014;40(6):1445–52.

Article  PubMed  Google Scholar 

Gajdošík M, Landheer K, Swanberg KM, Juchem C. INSPECTOR: free software for magnetic resonance spectroscopy data inspection, processing, simulation and analysis. Sci Rep. 2021;11(1):2094.

Article  PubMed  PubMed Central  Google Scholar 

Oeltzschner G, Zöllner HJ, Hui SCN, Mikkelsen M, Saleh MG, Tapper S, et al. Osprey: open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data. J Neurosci Methods. 2020;343:108827.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson M. Spant: an R package for magnetic resonance spectroscopy analysis. J Open Source Softw. 2021;6(67):3646.

Article  Google Scholar 

Bhogal AA, Schür RR, Houtepen LC, van de Bank B, Boer VO, Marsman A, et al. 1 H-MRS processing parameters affect metabolite quantification: the urgent need for uniform and transparent standardization. NMR Biomed. 2017;30(11):e3804.

Article  Google Scholar 

Craven AR, Bhattacharyya PK, Clarke WT, Dydak U, Edden RAE, Ersland L et al. Comparison of seven modelling algorithms for γ-aminobutyric acid–edited proton magnetic resonance spectroscopy. NMR Biomed. 2022 Jul [cited 2022 Oct 10];35(7). Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/nbm.4702.

Kanowski M, Kaufmann J, Braun J, Bernarding J, Tempelmann C. Quantitation of simulated short echo time 1H human brain spectra by LCModel and AMARES. Magn Reson Med. 2004;51(5):904–12.

Article  CAS  PubMed  Google Scholar 

Zöllner HJ, Považan M, Hui SCN, Tapper S, Edden RAE, Oeltzschner G. Comparison of different linear-combination modeling algorithms for short-TE proton spectra. NMR Biomed. 2021;34(4):e4482.

Article  PubMed  PubMed Central  Google Scholar 

Mikkelsen M, Bhattacharyya P, Mandal P, Shukla D, Wang A, Wilson M et al. Analyzing Big GABA: Comparison of Five Software Packages for GABA-Edited MRS. 2019.

Lin A, Andronesi O, Bogner W, Choi IY, Coello E, Cudalbu C, et al. Minimum reporting standards for in vivo magnetic resonance spectroscopy (MRSinMRS): experts’ consensus recommendations. NMR Biomed. 2021;34(5):e4484.

Article  PubMed  PubMed Central  Google Scholar 

Théberge J, Williamson KE, Aoyama N, Drost DJ, Manchanda R, Malla AK, et al. Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry. 2007;191(4):325–34.

Article  PubMed  Google Scholar 

Godlewska BR, Minichino A, Emir U, Angelescu I, Lennox B, Micunovic M, et al. Brain glutamate concentration in men with early psychosis: a magnetic resonance spectroscopy case–control study at 7 T. Transl Psychiatry. 2021;11(1):367.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang AM, Pradhan S, Coughlin JM, Trivedi A, DuBois SL, Crawford JL, et al. Assessing brain metabolism with 7-T Proton Magnetic Resonance Spectroscopy in patients with First-Episode Psychosis. JAMA Psychiatry. 2019;76(3):314–23.

Article  PubMed  PubMed Central  Google Scholar 

Jeon P, Limongi R, Ford SD, Mackinley M, Dempster K, Théberge J, et al. Progressive changes in Glutamate Concentration in Early stages of Schizophrenia: a longitudinal 7-Tesla MRS Study. Schizophr Bull Open. 2021;2(1):gaa072.

Article  Google Scholar 

Limongi R, Jeon P, Théberge J, Palaniyappan L. Counteracting effects of glutathione on the glutamate-driven Excitation/Inhibition imbalance in First-Episode Schizophrenia: a 7T MRS and Dynamic Causal modeling study. Antioxid Basel Switz. 2021;10(1):75.

Article  CAS  Google Scholar 

Posporelis S, Coughlin JM, Marsman A, Pradhan S, Tanaka T, Wang H, et al. Decoupling of brain temperature and glutamate in recent-onset of schizophrenia: a 7 Tesla 1H-MRS study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(3):248–54.

PubMed  Google Scholar 

Demro C, Rowland L, Wijtenburg SA, Waltz J, Gold J, Kline E, et al. Glutamatergic metabolites among adolescents at risk for psychosis. Psychiatry Res. 2017;257:179–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de la Fuente-Sandoval C, Reyes-Madrigal F, Mao X, León-Ortiz P, Rodríguez-Mayoral O, Solís-Vivanco R, et al. Cortico-striatal GABAergic and Glutamatergic Dysregulations in subjects at Ultra-high Risk for Psychosis investigated with Proton Magnetic Resonance Spectroscopy. Int J Neuropsychopharmacol. 2015;19(3):pyv105.

Article  PubMed  PubMed Central  Google Scholar 

Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. Association between increased anterior cingulate glutamate and psychotic-like experiences, but not autistic traits in healthy volunteers. Sci Rep. 2023;13(1):12792.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Modinos G, Egerton A, McLaughlin A, McMullen K, Kumari V, Lythgoe DJ, et al. Neuroanatomical changes in people with high schizotypy: relationship to glutamate levels. Psychol Med. 2018;48(11):1880–9.

Article  PubMed  Google Scholar 

Egerton A, Stone JM, Chaddock CA, Barker GJ, Bonoldi I, Howard RM, et al. Relationship between brain glutamate levels and clinical outcome in individuals at Ultra High Risk of Psychosis. Neuropsychopharmacology. 2014;39(12):2891–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo SY, Yeon S, Choi CH, Kang DH, Lee JM, Shin NY, et al. Proton magnetic resonance spectroscopy in subjects with high genetic risk of schizophrenia: investigation of anterior cingulate, dorsolateral prefrontal cortex and thalamus. Schizophr Res. 2009;111(1):86–93.

Article  PubMed  Google Scholar 

Landheer K, Swanberg KM, Juchem C. Magnetic resonance spectrum simulator (MARSS), a novel software package for fast and computationally efficient basis set simulation. NMR Biomed. 2021;34(5):e4129.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif