A Novel lncRNA lncRNA-4045 Promotes the Progression of Hepatocellular Carcinoma by Affecting the Expression of AKR1B10

Sung H, Ferlay J, Siegel RLet al. . Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries CA: a cancer journal for clinicians. 2021;71:209–249.

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022 CA: a cancer journal for clinicians. 2022;72:7–33.

Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma Lancet (London, England). 2022;400:1345–1362.

Article  CAS  PubMed  Google Scholar 

Toh MR, Wong EYT, Wong SH et al. Global Epidemiology and Genetics of Hepatocellular Carcinoma Gastroenterology. 2023;164:766–782.

PubMed  Google Scholar 

Zeng H, Chen W, Zheng R et al. Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries The Lancet. Global health. 2018;6:e555–e567.

PubMed  Google Scholar 

Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation Molecular cell. 2022;82:2252–2266.

CAS  PubMed  Google Scholar 

Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm Cancer research. 2017;77:3965–3981.

CAS  Google Scholar 

Entezari M, Taheriazam A, Orouei Set al. . LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022;154:113609.

Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function Nature reviews. Genetics. 2016;17:47–62.

CAS  PubMed  Google Scholar 

Cao C, Sun J, Zhang Det al. . The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of β-catenin in HCC cells Gastroenterology. 2015;148:415–426.e418.

Yuan JH, Liu XN, Wang TTet al. . The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1 Nature cell biology. 2017;19:820–832.

Wang Y, Yang L, Chen Tet al. . A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194–5p/FOXA1 axis Molecular cancer. 2019;18:28.

Pan W, Li W, Zhao Jet al. . lncRNA-PDPK2P promotes hepatocellular carcinoma progression through the PDK1/AKT/Caspase 3 pathway Molecular oncology. 2019;13:2246–2258.

Finn RS, Qin S, Ikeda M et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma The New England journal of medicine. 2020;382:1894–1905.

CAS  PubMed  Google Scholar 

Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms International journal of molecular sciences. 2024;25.

Huang Z, Zhou JK, Peng Y, He W, Huang C. The role of long noncoding RNAs in hepatocellular carcinoma Molecular cancer. 2020;19:77.

CAS  PubMed  Google Scholar 

Hashemi M, Moosavi MS, Abed HMet al. . Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy Pharmacological research. 2022;184:106418.

Ye M, Zhao L, Zhang Let al. . LncRNA NALT1 promotes colorectal cancer progression via targeting PEG10 by sponging microRNA-574–5p Cell death & disease. 2022;13:960.

Xing C, Sun SG, Yue ZQ, Bai F. Role of lncRNA LUCAT1 in cancer Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021;134:111158.

Hu J, Huang H, Xi Zet al. . LncRNA SEMA3B-AS1 inhibits breast cancer progression by targeting miR-3940/KLLN axis Cell death & disease. 2022;13:800.

Fang D, Ou X, Sun Ket al. . m6A modification-mediated lncRNA TP53TG1 inhibits gastric cancer progression by regulating CIP2A stability Cancer science. 2022;113:4135–4150.

Zhao Y, Yuan D, Zhu Det al. . LncRNA-MSC-AS1 inhibits the ovarian cancer progression by targeting miR-425–5p Journal of ovarian research. 2021;14:109.

Tay Y, Rinn J. Pandolfi pp. The multilayered complexity of ceRNA crosstalk and competition Nature. 2014;505:344–352.

CAS  PubMed  Google Scholar 

Guo K, Qian K, Shi Y, Sun T, Wang Z. LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150–5p Cell death & disease. 2021;12:1097.

Kong X, Duan Y, Sang Yet al. . LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215 Journal of cellular physiology. 2019;234:9105–9117.

Yao ZT, Yang YM,Sun MM, et al. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer Cancer communications (London, England). 2022;42:117–140.

PubMed  PubMed Central  Google Scholar 

Ren L, Fang X, Shrestha SMet al. . LncRNA SNHG16 promotes development of oesophageal squamous cell carcinoma by interacting with EIF4A3 and modulating RhoU mRNA stability Cellular & molecular biology letters. 2022;27:89.

Kim J, Piao HL, Kim BJet al. . Long noncoding RNA MALAT1 suppresses breast cancer metastasis Nature genetics. 2018;50:1705–1715.

Chen LL. Linking Long Noncoding RNA Localization and Function Trends in biochemical sciences. 2016;41:761–772.

CAS  PubMed  Google Scholar 

Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis RNA (New York, N.Y.). 2019;25:1–16.

Zheng YL, Li L, Jia YXet al. . LINC01554-Mediated Glucose Metabolism Reprogramming Suppresses Tumorigenicity in Hepatocellular Carcinoma via Downregulating PKM2 Expression and Inhibiting Akt/mTOR Signaling Pathway Theranostics. 2019;9:796–810.

Hu YP, Jin YP, Wu XSet al. . LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502–3p/SET/AKT axis Molecular cancer. 2019;18:167.

van Weverwijk A, Koundouros N, Iravani Met al. . Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation Nature communications. 2019;10:2698.

Ahmed SMU, Jiang ZN, Zheng ZH, Li Y, Wang XJ, Tang X. AKR1B10 expression predicts response of gastric cancer to neoadjuvant chemotherapy Oncology letters. 2019;17:773–780.

Liu W, Song J, Du Xet al. . AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model Acta biomaterialia. 2019;91:195–208.

Jung YJ, Lee EH, Lee CGet al. . AKR1B10-inhibitory Selaginella tamariscina extract and amentoflavone decrease the growth of A549 human lung cancer cells in vitro and in vivo Journal of ethnopharmacology. 2017;202:78–84.

Taskoparan B, Seza EG, Demirkol Set al. . Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer Cellular oncology (Dordrecht). 2017;40:563–578.

Yao Y, Wang X, Zhou Det al. . Loss of AKR1B10 promotes colorectal cancer cells proliferation and migration via regulating FGF1-dependent pathway Aging. 2020;12:13059–13075.

Zhu R, Xiao J, Luo D, Dong M, Sun T, Jin J. Serum AKR1B10 predicts the risk of hepatocellular carcinoma - A retrospective single-center study Gastroenterologia y hepatologia. 2019;42:614–621.

Jin GZ, Yu WL, Dong H et al. SUOX is a promising diagnostic and prognostic biomarker for hepatocellular carcinoma Journal of hepatology. 2013;59:510–517.

CAS  PubMed  Google Scholar 

Matkowskyj KA, Bai H, Liao Jet al. . Aldoketoreductase family 1B10 (AKR1B10) as a biomarker to distinguish hepatocellular carcinoma from benign liver lesions Human pathology. 2014;45:834–843.

Shi J, Chen L, Chen Y, Lu Y, Chen X, Yang Z. Aldo-Keto Reductase Family 1 Member B10 (AKR1B10) overexpression in tumors predicts worse overall survival in hepatocellular carcinoma Journal of Cancer. 2019;10:4892–4901.

Cheng BY, Lau EY, Leung HWet al. . IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma Cancer research. 2018;78:2332–2342.

Geng N, Jin Y, Li Y, Zhu S, Bai H. AKR1B10 Inhibitor Epalrestat Facilitates Sorafenib-Induced Apoptosis and Autophagy Via Targeting the mTOR Pathway in Hepatocellular Carcinoma International journal of medical sciences. 2020;17:1246–1256.

Jin J, Liao W, Yao W, Zhu R, Li Y, He S. Aldo-keto Reductase Family 1 Member B 10 Mediates Liver Cancer Cell Proliferation through Sphingosine-1-Phosphate Scientific reports. 2016;6:22746.

Zhou Y, Wong CO, Cho KJet al. . SIGNAL TRANSDUCTION. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling Science (New York, N.Y.). 2015;349:873–876.

留言 (0)

沒有登入
gif