A comparative study of CuO based solar cell with ZnTe HTL and SnS2 ETL using SCAPS 1D simulation

S. Hussain et al., Fabrication and photovoltaic characteristics of Cu2O/TiO2 thin film heterojunction solar cell. Thin Solid Films 522, 430–434 (2012). https://doi.org/10.1016/j.tsf.2012.08.013

Article  ADS  Google Scholar 

M.K. Hossain et al., Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells. Results Phys. 7, 1516–1523 (2017). https://doi.org/10.1016/j.rinp.2017.04.011

Article  ADS  Google Scholar 

M.K. Hossain et al., Efficiency enhancement of natural dye sensitized solar cell by optimizing electrode fabrication parameters. Mater. Sci. 35(4), 816–823 (2017). https://doi.org/10.1515/msp-2017-0086

Article  Google Scholar 

E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, K.-H. Kim, Solar energy: potential and future prospects. Renew. Sustain. Energy Rev. 82, 894–900 (2018). https://doi.org/10.1016/j.rser.2017.09.094

Article  Google Scholar 

Y. Gao, H.W. Liu, Y. Lin, G. Shao, Computational design of high efficiency FeSi2 thin-film solar cells. Thin Solid Films 519(24), 8490–8495 (2011). https://doi.org/10.1016/j.tsf.2011.05.030

Article  ADS  Google Scholar 

W. Qarony et al., Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results Phys. 7, 4287–4293 (2017). https://doi.org/10.1016/j.rinp.2017.09.030

Article  ADS  Google Scholar 

X. Wang, R. Tang, C. Wu, C. Zhu, T. Chen, Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells. J. Energy Chem. 27(3), 713–721 (2018). https://doi.org/10.1016/j.jechem.2017.09.031

Article  Google Scholar 

H. Bencherif et al., Performance enhancement of (FAPbI3)1–x(MAPbBr3)x perovskite solar cell with an optimized design. Micro. Nanostruct. 171, 207403 (2022). https://doi.org/10.1016/j.micrna.2022.207403

Article  Google Scholar 

M.K. Hossain et al., A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik (Stuttg) 171, 507–516 (2018). https://doi.org/10.1016/j.ijleo.2018.05.032

Article  ADS  Google Scholar 

P. Sawicka-Chudy et al., Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Express 6(8), 085918 (2019). https://doi.org/10.1088/2053-1591/ab22aa

Article  ADS  Google Scholar 

H. Meddeb et al., Wet chemical treatment of boron doped emitters on n-type (100) c-Si prior to amorphous silicon passivation. Appl. Surf. Sci. 328, 140–145 (2015). https://doi.org/10.1016/j.apsusc.2014.11.180

Article  ADS  Google Scholar 

L.A. Kosyachenko et al., Electrical characteristics of thin-film CdS/CdMgTe heterostructure for tandem solar cells. Sol. Energy 109, 144–152 (2014). https://doi.org/10.1016/j.solener.2014.08.029

Article  ADS  Google Scholar 

M.S. Islam et al., Investigation strain effects on the electronic, optical, and output performance of the novel inorganic halide perovskite Sr3SbI3 solar cell. Chin. J. Phys. (2024). https://doi.org/10.1016/j.cjph.2024.01.011

Article  Google Scholar 

M.F. Rahman et al., Exploring the impact of strain on the electronic and optical properties of inorganic novel cubic perovskite Sr3PI3. Phys. Scr. (2023). https://doi.org/10.1088/1402-4896/acfce9

Article  Google Scholar 

A. Ghosh et al., Investigating of novel inorganic cubic perovskites of A3BX3 (A=Ca, Sr, B=P, As, X=I, Br) and their photovoltaic performance with efficiency over 28%. J. Alloys Compd. 986, 174097 (2024). https://doi.org/10.1016/j.jallcom.2024

Article  Google Scholar 

N. Espinosa, F.C. Krebs, Life cycle analysis of organic tandem solar cells: When are they warranted? Sol. Energy Mater. Sol. Cells 120, 692–700 (2014). https://doi.org/10.1016/j.solmat.2013.09.013

Article  Google Scholar 

Y. Cao et al., Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 200, 109945 (2019). https://doi.org/10.1016/j.solmat.2019.109945

Article  Google Scholar 

S. Chen et al., Magnetron sputtered Sb2Se3-based thin films towards high performance quasi-homojunction thin film solar cells. Sol. Energy Mater. Sol. Cells 203, 110154 (2019). https://doi.org/10.1016/j.solmat.2019.110154

Article  Google Scholar 

G.-X. Liang et al., Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV. Nano Energy 73, 104806 (2020). https://doi.org/10.1016/j.nanoen.2020.104806

Article  ADS  Google Scholar 

R. Tang et al., Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film. Nano Energy 64, 103929 (2019). https://doi.org/10.1016/j.nanoen.2019.103929

Article  Google Scholar 

O. Briot et al., Optimization of the properties of the molybdenum back contact deposited by radiofrequency sputtering for Cu (In1−xGax) Se2 solar cells. Sol. Energy Mater. Sol. Cells 174, 418–422 (2018). https://doi.org/10.1016/j.solmat.2017.09.019

Article  Google Scholar 

T. Oku, R. Motoyoshi, K. Fujimoto, T. Akiyama, B. Jeyadevan, J. Cuya, Structures and photovoltaic properties of copper oxides/fullerene solar cells. J. Phys. Chem. Solids 72(11), 1206–1211 (2011). https://doi.org/10.1016/j.jpcs.2011.06.014

Article  ADS  Google Scholar 

M.F. Rahman et al., An investigation on strain-incited electronic and optical properties of novel inorganic cubic material Sr3AsCl3. J. Solid State Chem. 328, 124341 (2023). https://doi.org/10.1016/j.jssc.2023.124341

Article  Google Scholar 

A. Ghosh et al., Structural, electronic and optical characteristics of inorganic novel cubic perovskite Sr3AsI3. Opt. Contin. (2023). https://doi.org/10.1364/OPTCON.495816

Article  Google Scholar 

A. Ghosh, F. Rahman, R. Islam, S. Islam, Inorganic novel cubic halide perovskite Sr3AsI3: strain-activated electronic and optical properties. Heliyon 9(8), e19271 (2023). https://doi.org/10.1016/j.heliyon.2023.e19271

Article  Google Scholar 

A.B. Shanto et al., Investigating how the electronic and optical properties of a novel cubic inorganic halide perovskite, Sr3NI3 are affected by by strain. F1000RESEARCH 12, 1005 (2023). https://doi.org/10.12688/f1000research.137044.1

Article  Google Scholar 

M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 47). Prog. Photovoltaic Res. Appl. 24(1), 3–11 (2016). https://doi.org/10.1002/pip.2728

Article  Google Scholar 

N. Gupta et al., Deposition and characterization of nanostructured Cu2O thin-film for potential photovoltaic applications. J. Mater. Res. 28(13), 1740–1746 (2013). https://doi.org/10.1557/jmr.2013.150

Article  ADS  Google Scholar 

S. Anandan, X. Wen, S. Yang, Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 93(1), 35–40 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.002

Article  Google Scholar 

S.N. Vijayaraghavan, J. Wall, L. Li, G. Xing, Q. Zhang, F. Yan, Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO2 quantum dot electron transport layer. Mater. Today Phys. 13, 100204 (2020). https://doi.org/10.1016/j.mtphys.2020.100204

Article  Google Scholar 

M.A. Islam, Y. Sulaiman, N. Amin, A comparative study of BSF Layers for ultra-thin CdS:O/CdTe solar cells. Chalcogenide. Lett. 8(2), 65–75 (2011)

Google Scholar 

M. Cha et al., Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots. J. Am. Chem. Soc. 138(27), 8581–8587 (2016). https://doi.org/10.1021/jacs.6b04519

Article  Google Scholar 

E.M. Sanehira et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3(10), eaao4204 (2017). https://doi.org/10.1126/sciadv.aao4204

Article  Google Scholar 

J. Liang et al., Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 8(20), 1800504 (2018). https://doi.org/10.1002/aenm.201800504

Article  Google Scholar 

Y. Bai, X. Zong, H. Yu, Z.-G. Chen, L. Wang, scalable low-cost sns2 nanosheets as counter electrode building blocks for dye-sensitized solar cells. Chem–A Eur. J. 20(28), 8670–8676 (2014). https://doi.org/10.1002/chem.201402657

Article  Google Scholar 

M.S. Reza et al., Boosting efficiency above 28% using effective charge transport layer with Sr3 SbI3 based novel inorganic perovskite. RSC Adv. 13(45), 31330–31345 (2023). https://doi.org/10.1039/D3RA06137J

Article  ADS  Google Scholar 

M.K. Hossain, M.H.K. Rubel, G.F.I. Toki, I. Alam, M.F. Rahman, H. Bencherif, Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks. ACS Omega 7(47), 43210–43230 (2022). https://doi.org/10.1021/acsomega.2c05912

Article  Google Scholar 

S. Ahmmed, A. Aktar, M.F. Rahman, J. Hossain, A.B.M. Ismail, A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO. Optik (Stuttg) 223, 165625 (2020). https://doi.org/10.1016/j.ijleo.2020.165625

Article  ADS  Google Scholar 

M.S. Chowdhury et al., Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys. 16, 102839 (2020). https://doi.org/10.1016/j.rinp.2019.102839

Article  Google Scholar 

A. Ait Abdelkadir, E. Oublal, M. Sahal, A. Gibaud, Numerical simulation and optimization of n-Al-ZnO/n-CdS/p-CZTSe/p-NiO(HTL)/Mo solar cell system using SCAPS-1D. Results Opt. 8, 100257 (2022). https://doi.org/10.1016/j.rio.2022.100257

Article  Google Scholar 

A. Kuddus, M.F. Rahman, S. Ahmmed, J. Hossain, A.B.M. Ismail, Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data. Superlattices Microstruct. 132, 106168 (2019). https://doi.org/10.1016/j.spmi.2019.106168

Article  Google Scholar 

Y. Xiao, H. Wang, H. Kuang, Numerical simulation and performance optimization of Sb2S3 solar cell with a hole transport layer. Opt. Mater. 108, 110414 (2020). https://doi.org/10.1016/j.optmat.2020.110414

Article 

留言 (0)

沒有登入
gif