Intersegmental coordination in human slip perturbation responses

Intersegmental coordination (ISC) of lower limbs and planar covariation law (PCL) are important phenomena observed in biomechanics of human walking and other activities. Gait perturbations tend to cause deviation from the expected ISC pattern thus violating PCL. We used a data set of seven subjects, who experienced unexpected slips, to investigate and characterize the evolution of ISC during slip recoveries and falls. We have analyzed and presented the development of ISC patterns, encompassing the step preceding the slip initiation and duration of slip until it stops. The results show that the ISC patterns during slip recovery deviate considerably from the normal walking patterns. A newly proposed Euclidian distance-based metric (EDM) was used to quantify the deviation from the normal walking ISC pattern during four slip recoveries and three falls evaluated at gait events such as slip start, foot strike, and peak height of the swing foot. The timing of gait events after slip, pattern of EDM, placement of the feet after slip and temporal patterns of each limb angle have been presented. This initial investigation provides insight into the ISC during slip recovery which highlights the human natural recovery trajectories during such perturbations. The observed patterns of the ISC trajectories during slip can be used for the design of human-inspired controllers for exoskeleton devices that can provide external assistance to human subjects during balance recovery.

留言 (0)

沒有登入
gif