The Evaluation of Mass/DNA Copy Number of Mitochondria in Umbilical Cord Blood-derived Hematopoietic Stem Cells Cocultured with MSCs

Ebens CL, MacMillan ML, Wagner JE (2017) Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations. Expert Rev Hematol 10(1):81–97. https://doi.org/10.1080/17474086.2016.1268048

Article  CAS  PubMed  Google Scholar 

Smith AR, Wagner JE (2009) Alternative hematopoietic stem cell sources for transplantation: place of umbilical cord blood. Br J Haematol 147(2):246–261. https://doi.org/10.1111/j.1365-2141.2009.07828.x

Article  PubMed  PubMed Central  Google Scholar 

Gluckman E (2011) Milestones in umbilical cord blood transplantation. Blood Rev 25(6):255–259. https://doi.org/10.1016/j.blre.2011.06.003

Article  CAS  PubMed  Google Scholar 

Flores-Guzmán P, Fernández-Sánchez V, Mayani H (2013) Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med 2(11):830–838. https://doi.org/10.5966/sctm.2013-0071

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behzad-Behbahani A, Pouransari R, Tabei SZ, Rahiminejad MS, Robati M, Yaghobi R et al (2005) Risk of viral transmission via bone marrow progenitor cells versus umbilical cord blood hematopoietic stem cells in bone marrow transplantation. Transpl Proc 37(7):3211–3212. https://doi.org/10.1016/j.transproceed.2005.07.007

Article  CAS  Google Scholar 

Bari S, Chu PPY, Lim A, Fan X, Bunte RM, Li S et al (2015) Mitochondrial superoxide reduction and cytokine secretion skewing by carbon nanotube scaffolds enhance ex vivo expansion of human cord blood hematopoietic progenitors. Nanomed Nanotechnol Biol Med 11(7):1643–1656. https://doi.org/10.1016/j.nano.2015.06.005

Dessels C, Alessandrini M, Pepper MS (2018) Factors influencing the umbilical cord blood stem cell industry: an evolving treatment landscape. Stem Cells Transl Med 7(9):643–650. https://doi.org/10.1002/sctm.17-0244

Article  PubMed  PubMed Central  Google Scholar 

Guo C-J, Gao Y, Hou D, Shi D-Y, Tong X-M, Shen D et al (2011) Preclinical transplantation and safety of HS/PCs expanded from human umbilical cord blood. World J Stem Cells 3(5):43–52. https://doi.org/10.4252/wjsc.v3.i5.43

Article  PubMed  PubMed Central  Google Scholar 

Tung SS, Parmar S, Robinson SN, De Lima M, Shpall EJ (2010) Ex vivo expansion of umbilical cord blood for transplantation. Best Pract Res Clin Haematol 23(2):245–257. https://doi.org/10.1016/j.beha.2010.06.004

Article  CAS  PubMed  Google Scholar 

Sideri A, Neokleous N, Brunet De La Grange P, Guerton B, Le BousseKerdilles M-C, Uzan G et al (2011) An overview of the progress on double umbilical cord blood transplantation. Haematologica 96(8):1213–1220. https://doi.org/10.3324/haematol.2010.038836

Article  PubMed  PubMed Central  Google Scholar 

Ikehara S (2005) Intra-bone marrow-bone marrow transplantation: a new strategy for treatment of stem cell disorders. Ann N Y Acad Sci 1051:626–634. https://doi.org/10.1196/annals.1361.107

Article  PubMed  Google Scholar 

Carrancio S, Romo C, Ramos T, Lopez-Holgado N, Muntion S, Prins HJ et al (2013) Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant 22(7):1171–1183. https://doi.org/10.3727/096368912X657431

Article  CAS  PubMed  Google Scholar 

Meuleman N, Tondreau T, Ahmad I, Kwan J, Crokaert F, Delforge A et al (2009) Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev 18(9):1247–1252. https://doi.org/10.1089/scd.2009.0029

Article  PubMed  Google Scholar 

Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M (2019) Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 232:116598. https://doi.org/10.1016/j.lfs.2019.116598

Article  CAS  PubMed  Google Scholar 

de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367(24):2305–2315. https://doi.org/10.1056/NEJMoa1207285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walenda T, Bokermann G, Ventura Ferreira MS, Piroth DM, Hieronymus T, Neuss S et al (2011) Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp Hematol 39(6):617–628. https://doi.org/10.1016/j.exphem.2011.02.011

Article  CAS  PubMed  Google Scholar 

Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390. https://doi.org/10.1016/j.stem.2010.07.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagner W, Roderburg C, Wein F, Diehlmann A, Frankhauser M, Schubert R et al (2007) Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells (Dayton, Ohio) 25(10):2638–2647. https://doi.org/10.1634/stemcells.2007-0280

Article  CAS  PubMed  Google Scholar 

The organization and inheritance of the mitochondrial genome | Nature Reviews Genetics. https://www.nature.com/articles/nrg1708. Accessed 23.06.15

Shen J, Platek M, Mahasneh A, Ambrosone CB, Zhao H (2010) Mitochondrial copy number and risk of breast cancer: a pilot study. Mitochondrion 10(1):62–68. https://doi.org/10.1016/j.mito.2009.09.004

Article  CAS  PubMed  Google Scholar 

Hu L, Zhang Y, Miao W, Cheng T (2019) Reactive oxygen species and Nrf2: functional and transcriptional regulators of hematopoiesis. Oxid Med Cell Longev 2019:5153268. https://doi.org/10.1155/2019/5153268

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shinohara A, Imai Y, Nakagawa M, Takahashi T, Ichikawa M, Kurokawa M (2014) Intracellular reactive oxygen species mark and influence the megakaryocyte-erythrocyte progenitor fate of common myeloid progenitors. Stem Cells (Dayton, Ohio) 32(2):548–557. https://doi.org/10.1002/stem.1588

Article  CAS  PubMed  Google Scholar 

Jang Y-Y, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063. https://doi.org/10.1182/blood-2007-05-087759

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451. https://doi.org/10.1038/nm1388

Article  CAS  PubMed  Google Scholar 

Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611. https://doi.org/10.1016/j.cell.2008.01.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Menzies KJ, Auwerx, J (2018) The role of mitochondria in stem cell fate and aging. Development (Cambridge, England) 145(8):dev143420. https://doi.org/10.1242/dev.143420

Chen C-T, Hsu S-H, Wei Y-H (2010) Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells. Biochem Biophys Acta 1800(3):257–263. https://doi.org/10.1016/j.bbagen.2009.09.001

Article  CAS  PubMed  Google Scholar 

Chen C-T, Hsu S-H, Wei Y-H (2012) Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming. Biochem Biophys Acta 1820(5):571–576. https://doi.org/10.1016/j.bbagen.2011.09.013

Article  CAS  PubMed  Google Scholar 

Romero-Moya D, Bueno C, Montes R, Navarro-Montero O, Iborra FJ, López LC et al (2013) Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica 98(7):1022–1029. https://doi.org/10.3324/haematol.2012.079244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clay Montier LL, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics = Yi Chuan Xue Bao 36(3):125–131. https://doi.org/10.1016/S1673-8527(08)60099-5

Shadel GS (2008) Expression and maintenance of mitochondrial DNA: new insights into human disease pathology. Am J Pathol 172(6):1445–1456. https://doi.org/10.2353/ajpath.2008.071163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu M (2011) Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci 89(3–4):65–71. https://doi.org/10.1016/j.lfs.2011.05.010

Article  CAS  PubMed  Google Scholar 

M-Reboredo N, Díaz A, Castro A, Villaescusa RG (2000) Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation. Bone Marrow Transplant 26(12):1263–1270. https://doi.org/10.1038/sj.bmt.1702728

Adamson JW (1997) Cord blood stem cell banking and transplantation. Stem Cells (Dayton, Ohio) 15 Suppl 1:57–59; discussion 59–61. https://doi.org/10.1002/stem.5530150809

Venegas V, Halberg MC (2012) Measurement of mitochondrial DNA copy number. Methods Mol Biol (Clifton, N.J.) 837:327–335. https://doi.org/10.1007/978-1-61779-504-6_22

Noort WA, Kruisselbrink AB, in’t Anker PS, Kruger M, van Bezooijen RL, de Paus RA et al (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 30(8):870–878. https://doi.org/10.1016/s0301-472x(02)00820-2

Zhang Y, Chai C, Jiang X-S, Teoh S-H, Leong KW (2006) Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Eng 12(8):2161–2170. https://doi.org/10.1089/ten.2006.12.2161

Article  PubMed  Google Scholar 

Lin HD, Fong C-Y, Biswas A, Bongso A (2020) Allogeneic human umbilical cord Wharton’s jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem Cell Res Ther 11(1):527.

留言 (0)

沒有登入
gif