Uncertainty assessment in the calibration of an auto-compensated laser interferometer system

H. Takino, Y. Takeuchi, Chiba Institute of Technology 2–17–1 Tsudanuma, Narashino, Chiba 275–0016, Japan, Chubu University, Kasugai, Japan, Machining of Smooth Optical Surfaces by Ultraprecision Milling with Compensated Feeding Mechanisms, Int. J. Autom. Technol. 13 185–190. (2019) https://doi.org/10.20965/ijat.2019.p0185.

G.T. Smith, Machine tool metrology: an Industrial handbook Springer, Cham (2016)

Book  Google Scholar 

P.K. Kankar, G. Moona, K.A. Desai, Measurement and metrology in advanced manufacturing processes. Mapan 37, 703–705 (2022). https://doi.org/10.1007/s12647-022-00606-w

Article  Google Scholar 

P. De Groot, J. Biegen, J. Clark, X. Colonna De Lega, D. Grigg, Optical interferometry for measurement of the geometric dimensions of industrial parts. Appl. Opt. 41, 3853 (2002). https://doi.org/10.1364/AO.41.003853

Article  ADS  Google Scholar 

M. Das, S.K. Ghosh, K. Kumar, E.J. James, M. Singh, A. Kumar, Laser-based optical interferometer manometer design for primary pressure standard in India. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01347-y

Article  Google Scholar 

Y. Zhang, K.-N. Joo, F. Guzman, Fiber-based two-wavelength heterodyne displacement interferometer, in: Y. Soskind, L.E. Busse (Eds.), Photonic Instrum. Eng. IX, SPIE, San Francisco, United States, p. 41 (2022). https://doi.org/10.1117/12.2609998

N.V. Raghavendra, L. Krishnamurthy, Engineering metrology and measurements, Oxford University Press, New Delhi, (2013)

Google Scholar 

A.T. Hoang, T.T. Vu, D.Q. Pham, T.T. Vu, T.D. Nguyen, V.H. Tran, High precision displacement measuring interferometer based on the active modulation index control method. Measurement 214, 112819 (2023). https://doi.org/10.1016/j.measurement.2023.112819

Article  Google Scholar 

T.T. Vu, H.H. Hoang, T.T. Vu, N.T. Bui, A displacement measuring interferometer based on a frequency-locked laser diode with high modulation frequency. Appl. Sci. 10, 2693 (2020). https://doi.org/10.3390/app10082693

Article  Google Scholar 

P. Hu, J. Zhu, X. Zhai, J. Tan, DC-offset-free homodyne interferometer and its nonlinearity compensation. Opt. Express 23, 8399 (2015). https://doi.org/10.1364/OE.23.008399

Article  ADS  Google Scholar 

G.N. Vishnyakov, V.L. Minaev, E.V. Shumsky, Homodyne quadrature displacement interferometer. Experimental results. Opt. Spectrosc. 130(5), 327–335 (2022). https://doi.org/10.1134/S0030400X22050058

Article  ADS  Google Scholar 

T. Podżorny, G. Budzyń, J. Rzepka, Linearization methods of laser interferometers for pico/nano positioning stages. Optik 124, 6345–6348 (2013). https://doi.org/10.1016/j.ijleo.2013.05.054

Article  ADS  Google Scholar 

Y. Qian, J. Li, Q. Feng, Q. He, F. Long, Error analysis of heterodyne interferometry based on one single-mode polarization-maintaining fiber. Sensors 23, 4108 (2023). https://doi.org/10.3390/s23084108

Article  ADS  Google Scholar 

H. Nozato, W. Kokuyama, A. Ota, Improvement and validity of shock measurements using heterodyne laser interferometer. Measurement 77, 67–72 (2016). https://doi.org/10.1016/j.measurement.2015.08.037

Article  ADS  Google Scholar 

M. Pisani, A homodyne Michelson interferometer with sub-picometer resolution. Meas. Sci. Technol. 20, 084008 (2009). https://doi.org/10.1088/0957-0233/20/8/084008

Article  ADS  Google Scholar 

G. Dai, X. Hu, Correction of interferometric high-order nonlinearity error in metrological atomic force microscopy. Nanomanufact. Metrol. 5, 412–422 (2022). https://doi.org/10.1007/s41871-022-00154-6

Article  Google Scholar 

E. Zhang, B. Chen, H. Zheng, X. Teng, Laser heterodyne interference signal processing method based on phase shift of reference signal. Opt. Express 26, 8656 (2018). https://doi.org/10.1364/OE.26.008656

Article  ADS  Google Scholar 

P. Hu, J. Wang, X. Lin, X. Xing, H. Fu, J. Tan, Phase measurement method based on digital dual frequency comb for high-precision high-speed heterodyne interferometry. IEEE Sens. J. 23, 9707–9715 (2023). https://doi.org/10.1109/JSEN.2023.3262281

Article  ADS  Google Scholar 

Y. Wang, Y. Bai, Y. Lu, P. Hu, Z. Li, The next generation heterodyne laser interferometer in joule balance. IEEE Trans. Instrum. Meas. 72, 1–8 (2023). https://doi.org/10.1109/TIM.2023.3276013

Article  Google Scholar 

L.C. Lipus, G. Budzyn, B. Acko, Analysis of laser interferometer measurement uncertainty by simulating error sources. Int. J. Simul. Model. 20, 339–350 (2021). https://doi.org/10.2507/IJSIMM20-2-563

Article  Google Scholar 

Z. Buchta, M. Šarbort, M. Čížek, V. Hucl, Š Řeřucha, T. Pikálek, Š Dvořáčková, F. Dvořáček, J. Kůr, P. Konečný, M. Weigl, J. Lazar, O. Číp, System for automatic gauge block length measurement optimized for secondary length metrology. Precis. Eng. 49, 322–331 (2017). https://doi.org/10.1016/j.precisioneng.2017.03.002

Article  Google Scholar 

V. Zivkovic, S. Zelenika, G. Stefanovic, Uncertainty evaluation for the gauge blocks calibration using the modified DMDM gauge block interferometer. Int. J. Metrol. Qual. Eng. 3, 19–27 (2012). https://doi.org/10.1051/ijmqe/2012001

Article  Google Scholar 

A. Winarno, S. Takahashi, A. Hirai, K. Takamasu, H. Matsumoto, Absolute measurement of gauge block without wringing using tandem low-coherence interferometry. Meas. Sci. Technol. 23, 125001 (2012). https://doi.org/10.1088/0957-0233/23/12/125001

Article  ADS  Google Scholar 

S.J.A.G. Cosijns, M.J. Jansen, H. Haitjema, Advanced optical incremental sensors: encoders and interferometers, in Smart sensors and MEMS, 2nd edn., ed. by S. Nihtionov, A. Luque (Elsevier Inc., Duxshire, UK, ), pp.245–290, (2018)

Chapter  Google Scholar 

D. Flack and J. Hannaford, Fundamental Good Practice in Dimensional Metrology. In: NPL Good Practice Guide No. 80, National Physical Laboratory, 2012.

E. Hecht, Optics, 5th edn. (Pearson Education Inc, Boston, (2017)

Google Scholar 

A. Hirai, M. Kajima, and S. Telada, Displacement. In Handbook of Optical Metrology: Principles and Applications, 2nd ed.; Toru Yoshizawa, CRC Press, NPO3D Associates, Yokohama, Japan, 2017, pp. 433–449. https://doi.org/10.1201/b18328.

P. Hariharan, Basics of interferometry. Elsevier (2007). https://doi.org/10.1016/B978-0-12-373589-8.X5000-7

Article  ADS  Google Scholar 

W. R. C Rowley, Analysis of laser frequency stability by heterodyne measurement, NPL Report MOM 78, (1986)

B. Samoudi, M.M. Pérez, S. Ferreira-Barragáns, E. Prieto, Absolute optical frequency measurements of iodine-stabilized He-Ne laser at 633 nm by using a femtosecond laser frequency comb. Int. J. Metrol. Qual. Eng. 3, 101–106 (2012). https://doi.org/10.1051/ijmqe/2012012

Article  Google Scholar 

B. Samoudi, Realisation of the metre by using a femtosecond laser frequency comb: applications in optical frequency metrology. Int. J. Metrol. Qual. Eng. 8, 16 (2017). https://doi.org/10.1051/ijmqe/2017008

Article  Google Scholar 

M. Jewariya, Optical Frequency Comb: A Novel Ruler of Light for Realization of SI Unit Meter, in: D.K. Aswal, S. Yadav, T. Takatsuji, P. Rachakonda, H. Kumar (Eds.), Handb. Metrol Appl., Springer Nature Singapore, Singapore, pp. 219–234 (2023) https://doi.org/10.1007/978-981-99-2074-7_13

T.J. Quinn, Practical realization of the definition of the metre (1997). Metrologia 36, 211–244 (1999). https://doi.org/10.1088/0026-1394/36/3/7

Article  ADS  Google Scholar 

B. Edlén, The refractive index of air. Metrologia 2, 71–80 (1966). https://doi.org/10.1088/0026-1394/2/2/002

Article  ADS  Google Scholar 

K.P. Birch, M.J. Downs, An updated edlén equation for the refractive index of air. Metrologia 30, 155–162 (1993). https://doi.org/10.1088/0026-1394/30/3/004

Article  ADS  Google Scholar 

K.P. Birch, M.J. Downs, Correction to the updated edlén equation for the refractive index of air. Metrologia 31, 315–316 (1994). https://doi.org/10.1088/0026-1394/31/4/006

Article  ADS  Google Scholar 

BIPM, Evaluation of measurement data – Guide to the expression of uncertainty in measurement, JCGM 100 (2008).

H. Haitjema, Calibration of displacement laser interferometer systems for industrial metrology. Sensors 19, 4100 (2019). https://doi.org/10.3390/s19194100

Article  ADS  Google Scholar 

T.J. Quinn, Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia 40, 103–133 (2003). https://doi.org/10.1088/0026-1394/40/2/316

Article  ADS  Google Scholar 

留言 (0)

沒有登入
gif