Analysis of laser induced breakdown spectra for distinguish between healthy and carious teeth

M. Garcimuno, D.D. Pace, G. Bertuccelli, Laser-induced breakdown spectroscopy for quantitative analysisof copper in algae. Opt. Laser Technol. 47, 26–30 (2013)

Article  ADS  Google Scholar 

I.K. Abbas, Study the impact of laser energy on laser-induced copper plasma parameters by spectroscopic analysis technique. Sci. Technol. Indonesia 7(4), 508–513 (2022)

Article  Google Scholar 

Z. Chen, G. Dong, H. Gao, J. Qiu, Two-/multi-wavelength light excitation effects in optical materials: from fundamentals to applications. Prog. Mater. Sci.. Mater Sci. 105, 100568 (2019)

Article  Google Scholar 

R. Zaplotnik, G. Primc, A. Vesel, Optical emission spectroscopy as a diagnostic tool for characterization of atmospheric plasma jets. Appl. Sci. 11(5), 2275 (2021)

Article  Google Scholar 

L. Radziemski, D. Cremers, A brief history of laser-induced breakdown spectroscopy: from the concept of atoms to LIBS 2012. Spectrochim. Acta Part B At. Spectrosc. 87, 3–10 (2013)

Article  ADS  Google Scholar 

A.F. Ahmed, K.A. Aadim, A.A. Yousef, Spectroscopic study of AL nitrogen plasma produced by DC glow discharge. Iraqi J. Sci. 59, 494–501 (2018)

Google Scholar 

M.A. Khalaf, B.M. Ahmed, K.A. Aadim, Spectroscopic analysis of CdO1-X: SnX plasma produced by Nd:YAG laser. Iraqi J. Sci. 61, 1665–1671 (2020)

Article  Google Scholar 

V.K. Singh, A.K. Rai, Prospects for laser-induced breakdown spectroscopy for biomedical applications. Lasers Med. Sci. 26(5), 673–687 (2011)

Article  Google Scholar 

A.H. Shaker, K.A. Aadim, M.H. Nida, Spectroscopic analysis of zinc plasma produced by alternating and direct current jet. J Opt (2023). https://doi.org/10.1007/s12596-023-01256-0

Article  Google Scholar 

Aadim, K.A., Mohammad, A.Z., Abduljabbar, M.A., Influence of laser energy on synthesizes of CdO/Nps in liquid environment, IOP Conference Series Materials Science and Engineering January (2019). https://doi.org/10.1088/1757-899X/454/1/012028

J. Batool, N. Amin, Y. Jamil, N. Shaikh, A. Shamoon,"Rapid elemental analysis of human teeth using laser induced breakdown spectroscopy. Phys B: Phys Condens Matter. 602 (2021). https://doi.org/10.1016/j.physb.2020.412495

R. Nouir, I. Cherni, H. Ghalila, S. Hamzaoui, Early diagnosis of dental pathologies by front face fluorescence (FFF) and laser-induced breakdown spectroscopy (LIBS) with principal component analysis (PCA). Instrum. Sci. Technol. Sci. Technol. 50, 465–480 (2022)

Article  ADS  Google Scholar 

Priyanka, V.K. Unnikrishnan, M. Prasanna, N. Srikant, B. Joanna, K. Keerthi, O. Ravikiran, Validity of laser induced breakdown spectroscopy (LIBS) in determining age and sex from tooth specimens. Heliyon 8, 10946 (2022)

Article  Google Scholar 

J. Haddad, L. Canioni, B. Bousquet, Good practices in LIBS analysis: Review and advices. Spectrochim Acta B Atomic spectroscopy 101, 171–182 (2014)

Article  ADS  Google Scholar 

M.M. Hameed, A.-M. Al-Samarai, K.A. Aadim, Synthesis and characterization of gallium oxide nanoparticles using pulsed laser deposition. Iraqi J. Sci. 61(10), 2582–2589 (2020)

Article  Google Scholar 

D.D. Cohen, E. Clayton, T. Ainsworth, Preliminary investigations of trace element concentration in human teeth. Nucl Inst and Meth in Phys Res. 188(1), 203–209 (1981)

ADS  Google Scholar 

P.F. Gonçalves, E.A. Sallum, A.W. Sallum, M.Z. Casati, S.D. Toledo, F.H.N. Junior, Dental cementum reviewed: development, structure, composition, regeneration and potential functions. Braz J Oral Sci 4(12), 651–658 (2005)

Google Scholar 

K. Sarna-Boś, K. Skic, P. Boguta, A. Adamczuk, M. Vodanovic, R. Chałas, Elemental mapping of human teeth enamel, dentine and cementum in view of their microstructure. Micron 172, 103485 (2023)

Article  Google Scholar 

Y. Nakano, P. DenBesten, M. Goldberg. Structure of Collagen-Derived Mineralized Tissues (Dentin, Cementum, and Bone) and Non-collagenous Extra Cellular Matrix of Enamel. In: Goldberg, M., Den Besten, P. (eds) Extracellular Matrix Biomineralization of Dental Tissue Structures. Biology of Extracellular Matrix, Springer, Cham., vol 10, pp 3–34, (2021). https://doi.org/10.1007/978-3-030-76283-4_1

Abu Nasar. Hydroxyapatite and its coatings in dental implants. Applications of Nanocomposite Materials in Dentistry, pp 145-160, (2019). https://doi.org/10.1016/B978-0-12-813742-0.00008-0

Rathee M, Jain P. Embryology, Teeth. In: StatPearls. Treasure Island (FL): StatPearls Publishing; July 25, 2023. https://pubmed.ncbi.nlm.nih.gov/32809350/

M.E. Grawish, L.M. Grawish, H.M. Grawish et al., Demineralized dentin matrix for dental and alveolar bone tissues regeneration: an innovative scope review. Tissue Eng Regen Med 19, 687–701 (2022)

Article  Google Scholar 

A. Hanć, A. Olszewska, D. Barałkiewic, Quantitative analysis of elements migration in human teeth with and without filling using LA-ICP-MS. Microchem. J.. J. 110, 61–69 (2013)

Article  Google Scholar 

M.D.P. Gutiérrez-Salazar, J. Reyes-Gasga, Microhardness and chemical composition of human tooth. Mater. Res. 6(3), 367–373 (2003)

Article  Google Scholar 

M.H. Hong, J.H. Lee, H.S. Jung et al., Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomater Res 26, 42 (2022)

Article  Google Scholar 

R.H. Selwitz, A.I. Ismail, N.B. Pitts, Dental caries. The Lancet 369(9555), 51–59 (2007)

Article  Google Scholar 

N. Pitts, D. Zero, P. Marsh et al., Dental caries. Nat Rev Dis Primers 3, 17030 (2017)

Article  Google Scholar 

K.M. Lagan, B.A. Clements, S.M. Donough, G.D. Baxter, Low intensity laser therapy (830 nm) in the management of minor postsurgical wounds: a controlled clinical study. Laser Surg Med 28(1), 27–32 (2001)

Article  Google Scholar 

K. Shay, Infectious complications of dental and periodontal diseases in the elderly population. Clin. Infect. Dis.. Infect. Dis. 34, 1215–1223 (2002)

Article  Google Scholar 

E. Zaura, J.M. ten Cate, Dental plaque as a biofilm: a pilot study of the effects of nutrients on plaque pH and dentin demineralization. Caries Res. 38, 9–15 (2003)

Article  Google Scholar 

S. Dubey, S. Dubey, A. Gupta, V. Sharma, Biofilm-mediated dental diseases, in Biofilms in Human Diseases: Treatment and Control. ed. by S. Kumar, N. Chandra, L. Singh, M. Hashmi, A. Varma (Springer, Cham., ), pp.91–116,(2019)

Chapter  Google Scholar 

I. Rowińska, A. Szyperska-Ślaska, P. Zariczny, R. Pasławski, K. Kramkowski, P. Kowalczyk, The influence of diet on oxidative stress and inflammation induced by bacterial biofilms in the human oral cavity. Materials 14, 1444 (2021)

Article  ADS  Google Scholar 

R. Fekrazad, Applications of Laser in Dentistry. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_7 (2020)

L. Kashkosh, T. Genaid, A. Abdallah, Effect of hydro-abrasion versus conventional cavity preparation on the clinical performance of composite resin restoration. Egyptian Dental J. 67, 2759–2773 (2021)

Article  Google Scholar 

M. Cardoso et al., Efficacy and patient’s acceptance of alternative methods for caries removal—a systematic review. J. Clin. Med.Clin. Med. 9(11), 3407 (2020)

Article  Google Scholar 

M. H. Niemz, Medical Applications of Lasers. In: Laser-Tissue Interactions. Springer, Cham. (2019). https://doi.org/10.1007/978-3-030-11917-1_4

E. Daghigh Ahmadi, S. Hafeji, Z. Khurshid, E. Imran, M.S. Zafar, M. Saeinasab, F. Sefa, Biophotonics in dentistry. Appl. Sci. 12, 4254 (2022)

Article  Google Scholar 

R.A. Convissar, The biologic rationale for the use of lasers in dentistry. Dental Clinics. 48, 771–794 (2004)

Google Scholar 

E. Borisova, T. Uzunov, L. Avramov, Laser-induced autofluorescence study of caries model in vitro. Lasers Med. Sci. 21(1), 34–41 (2006)

Article  Google Scholar 

S.N. Rashid, K.A. Aadim, A.S. Jasim, Silver nanoparticles synthesized by Nd: YAG laser ablation technique: characterization and antibacterial activity. Karbala Int. J. Mod. Sci. 8, 8 (2022)

Google Scholar 

A. Aoki, K. Mizutani et al., Periodontal and peri-implant wound healing following laser therapy. Periodontol. 2000(68), 217–269 (2015)

Article  Google Scholar 

H. Telle, O. Samek, Biomedical Applications of LIBS (Cambridge University Press, Cambridge, 2006), pp.282–309

Google Scholar 

O. Samek, M. Liška, J. Kaiser, D.C.S. Beddows, H.H. Telle, S.V. Kukhlevsky, Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials. J Clin Las. Med. Surg. 18, 281–289 (2000)

Article  Google Scholar 

M. Bahreini, B. Ashrafkhani, S.H. Tavassoli, Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails. J. Biomed. Opt. 18(10), 107006 (2013)

Article  Google Scholar 

Version 5., National Institute of Standards and Technology (NIST) Atomic spectra database, (2017)

A. Nanci, Ten Cate’s Oral Histology: Development, Structure, and Function, 2nd edn. (Elsevier, Amsterdam, 2018), pp.70–94

Google Scholar 

M. Gazmeh, M. Bahreini, S.H. Tavassoli, M. Asnaashari, Qualitative analysis of teeth and evaluation of amalgam elements penetration into dental matrix using laser induced breakdown spectroscopy. J. Laser Med. Sci. 6(2), 67 (2015)

Google Scholar 

A. Khalid, S. Bashir, M. Akram et al., Laser-induced breakdown spectroscopy analysis of human deciduous teeth samples. Lasers Med Sci 30, 2233–2238 (2015). https://doi.org/10.1007/s10103-015-1790-x

Article  Google Scholar 

V.K. Singh, A.K. Rai, Potential of laser-induced breakdown spectroscopy for the rapid identification of carious teeth. Lasers Med. Sci. 26, 307–315 (2011)

Article  Google Scholar 

留言 (0)

沒有登入
gif