Functionalization of niobium nitrogen-doped titanium dioxide (TiO2) nanoparticles by using Mucuna pruriens methanolic extracts

Aditya BS, Arivarasu L, Rajeshkumar S, Thangavelu L (2021) Antioxidant and antiinflammatory activity of titanium dioxide nanoparticles synthesised using Mucuna pruriens. J Pharm Res Int 33(62A):414–422. https://doi.org/10.9734/jpri/2021/v33i62a35616

Article  CAS  Google Scholar 

Agarwal H, Menon S, Shanmugam VK (2020) Functionalization of zinc oxide nanoparticles using Mucuna pruriens and its antibacterial activity. Surf Interfaces 19:100521. https://doi.org/10.1016/j.surfin.2020.100521

Article  CAS  Google Scholar 

Ahn EY, Shin SW, Kim K, Park Y (2022) Facile green synthesis of titanium dioxide nanoparticles by upcycling mangosteen (Garcinia mangostana) pericarp extract. Nanoscale Res Lett 17(1):40. https://doi.org/10.1186/s11671-022-03678-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alsalhi MS, Devanesan S, Atif M, Alqahtani WS, Nicoletti M, Del Serrone P (2020) Therapeutic potential assessment of green synthesized zinc oxide nanoparticles derived from fennel seeds extract. Int J Nanomedicine 15:8045–8057. https://doi.org/10.2147/IJN.S272734

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anushya P, Geetha RV, Kumar SR (2021) Evaluation of anti inflammatory and cytotoxic effect of copper nanoparticles synthesised using seed extract of Mucuna pruriens. J Pharm Res Int 33(47B):816–824. https://doi.org/10.9734/jpri/2021/v33i47b33188

Article  CAS  Google Scholar 

Aravind M, Ahmad A, Ahmad I et al (2021) Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J Environ Chem Eng 9(1):104877. https://doi.org/10.1016/j.jece.2020.104877

Article  CAS  Google Scholar 

Arulkumar S, Sabesan M (2010) Rapid preparation process of antiparkinsonian drug Mucuna pruriens silver nanoparticle by bioreduction and their characterization. Pharmacogn Res 2(4):233–236. https://doi.org/10.4103/0974-8490.69112

Article  CAS  Google Scholar 

Arunarajeswari P, Mathavan T, Jeyaseelan SC, Divya A, Benial AMF (2022) Anionic acid functionalized mesoporous γ-Al2O3 nanorods: preparation, physicochemical and biological characterizations. Chemical Data Collections 37:100819. https://doi.org/10.1016/j.cdc.2021.100819

Article  CAS  Google Scholar 

Baker S, Rakshith D, Kavitha KS et al (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts 3(3):111–117. https://doi.org/10.5681/bi.2013.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bordiwala RV (2023) Green synthesis and applications of metal nanoparticles—a review article. Results Chem 5:100832. https://doi.org/10.1016/j.rechem.2023.100832

Article  CAS  Google Scholar 

Gamedze NP, Mthiyane DMN, Babalola OO, Singh M, Onwudiwe DC (2022) Physico-chemical characteristics and cytotoxicity evaluation of CuO and TiO2 nanoparticles biosynthesized using extracts of Mucuna pruriens utilis seeds. Heliyon 8(8):e10187. https://doi.org/10.1016/j.heliyon.2022.e10187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

Article  CAS  Google Scholar 

Jadoun S, Arif R, Jangid NK, Meena RK (2021) Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett 19(1):355–374. https://doi.org/10.1007/s10311-020-01074-x

Article  CAS  Google Scholar 

Jiang Y, Zhou P, Zhang P et al (2022) Green synthesis of metal-based nanoparticles for sustainable agriculture. Environ Pollut 309:119755. https://doi.org/10.1016/j.envpol.2022.119755

Article  CAS  PubMed  Google Scholar 

Kaningini AG, Motlhalamme T, More GK, Mohale KC, Maaza M (2023) Antimicrobial, antioxidant, and cytotoxic properties of biosynthesized copper oxide nanoparticles (CuO-NPs) using Athrixia phylicoides DC. Heliyon 9(4):e15265. https://doi.org/10.1016/j.heliyon.2023.e15265

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan MA, Wallace WT, Islam SZ et al (2017) Adsorption and recovery of polyphenolic flavonoids using TiO2-functionalized mesoporous silica nanoparticles. ACS Appl Mater Interfaces 9(37):32114–32125. https://doi.org/10.1021/acsami.7b09510

Article  CAS  PubMed  Google Scholar 

Küünal S, Rauwel P, Rauwel E (2018) Plant extract mediated synthesis of nanoparticles. Emerging applications of nanoparticles and architectural nanostructures: current prospects and future trends. Elsevier Inc., Amsterdam, pp 411–446

Chapter  Google Scholar 

Maurya A, Chauhan P, Mishra A, Pandey AK (2012) Surface functionalization of TiO2 with plant extracts and their combined antimicrobial activities against E. faecalis and E. coli. J Res Updates Polym Sci 1(12):43–51

Article  CAS  Google Scholar 

Menon S, Agarwal H, Shanmugam VK (2021) Catalytical degradation of industrial dyes using biosynthesized selenium nanoparticles and evaluating its antimicrobial activities. Sustain Environ Res 31(1):1–12. https://doi.org/10.1186/s42834-020-00072-6

Article  CAS  Google Scholar 

Menon S, Jayakodi S, Yadav KK et al (2022) Preparation of paclitaxel-encapsulated bio-functionalized selenium nanoparticles and evaluation of their efficacy against cervical cancer. Molecules 27(21):7290. https://doi.org/10.3390/molecules27217290

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

Article  CAS  PubMed  Google Scholar 

Mohammadzadeh V, Barani M, Amiri MS et al (2022) Applications of plant-based nanoparticles in nanomedicine: a review. Sustain Chem Pharm 25:100606. https://doi.org/10.1016/j.scp.2022.100606

Article  CAS  Google Scholar 

Naseem K, Ur Rehman MZ, Ahmad A, Algarni TS, Dubal D (2020) Plant extract induced biogenic preparation of silver nanoparticles and their potential as catalyst for degradation of toxic dyes. Coatings 10(12):1–15. https://doi.org/10.3390/coatings10121235

Article  CAS  Google Scholar 

Preethi S, Abarna K, Nithyasri M et al (2020) Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Int J Biol Macromol 164:2779–2787. https://doi.org/10.1016/j.ijbiomac.2020.08.047

Article  CAS  PubMed  Google Scholar 

Rahmani-Nezhad S, Dianat S, Saeedi M, Hadjiakhoondi A (2017) Characterization and catalytic activity of plant-mediated MgO nanoparticles using Mucuna pruriens L. seed extract and their biological evaluation. J Nanoanal 4(4):290–298. https://doi.org/10.22034/jna.2017.540020

Article  Google Scholar 

Rakesh B, Srinatha N, Rudresh Kumar KJ, Madhu A, Suresh Kumar MR, Praveen N (2022) Antibacterial activity and spectroscopic characteristics of silver nanoparticles synthesized via plant and in vitro leaf-derived callus extracts of Mucuna pruriens (L.) DC. S Afr J Bot 148:251–258. https://doi.org/10.1016/j.sajb.2022.04.047

Article  CAS  Google Scholar 

Ram VV, Arivarasu L, Rajeshkumar S, Thangavelu L (2021) Green synthesis and characterisation of mucuna pruriens mediated titanium dioxide nanoparticles using transmission electron microscope. J Pharm Res Int 33(62B):362–370. https://doi.org/10.9734/jpri/2021/v33i62b35624

Article  CAS  Google Scholar 

Rani N, Rani S, Patel H et al (2023) Characterization and investigation of antioxidant and antimicrobial activity of zinc oxide nanoparticles prepared using leaves extract of Nyctanthes arbor-tristis. Inorg Chem Commun 150:110516. https://doi.org/10.1016/j.inoche.2023.110516

Article  CAS  Google Scholar 

Rieshy V, Chokkattu JJ, Rajeshkumar S, Neeharika S (2023) Mechanism of action of clove and ginger herbal formulation-mediated TiO2 nanoparticles against Lactobacillus species: an in vitro study. J Adv Oral Res 14(1):61–66. https://doi.org/10.1177/23202068221142440

Article  Google Scholar 

Santhoshkumar T, Rahuman AA, Jayaseelan C et al (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7(12):968–976. https://doi.org/10.1016/S1995-7645(14)60171-1

Article  CAS  PubMed  Google Scholar 

Satti SH, Raja NI, Ikram M et al (2022) Plant-based titanium dioxide nanoparticles trigger biochemical and proteome modifications in Triticum aestivum L. under biotic stress of Puccinia striiformis. Molecules 27(13):4274. https://doi.org/10.3390/molecules27134274

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian A, Arulkumar S, Sabesan M (2010) Biosynthesis and characterization of gold nanoparticle using antiparkinsonian drug mucuna pruriens plant extract. Int J Res Pharm Sci 1(4):417–420

Google Scholar 

Thangavelu C, Kasilingam T, Asokan T, Gobi R (2014) The corrosion inhibition of carbon steel by lauric acid zinc ion system in neutral aqueous media. J Environ Nanotechnol 3(4):78–85. https://doi.org/10.13074/jent.2014.12.144115

Article  Google Scholar 

Thanh NC, Pugazhendhi A, Chinnathambi A et al (2022) Silver nanoparticles (AgNPs) fabricating potential of aqueous shoot extract of Aristolochia bracteolata and assessed their antioxidant efficiency. Environ Res 208:112683. https://doi.org/10.1016/j.envres.2022.112683

Article  CAS  PubMed  Google Scholar 

Timoszyk A, Grochowalska R (2022) Mechanism and antibacterial activity of gold nanoparticles (AuNPs) functionalized with natural compounds from plants. Pharmaceutics 14(12):2599. https://doi.org/10.3390/pharmaceutics14122599

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif