Detection sensitivity of fluorescence lifetime imaging ophthalmoscopy for laser-induced selective damage of retinal pigment epithelium

Jiao S, Jia Y, Yao X (2021) Emerging imaging developments in experimental vision sciences and ophthalmology. Exp Biol Med (Maywood) 246:2137–2139. https://doi.org/10.1177/15353702211038891

Article  CAS  PubMed  Google Scholar 

Schmitz-Valckenberg S, Pfau M, Fleckenstein M et al (2021) Fundus autofluorescence imaging. Prog Retin Eye Res 81:100893. https://doi.org/10.1016/j.preteyeres.2020.100893

Article  CAS  PubMed  Google Scholar 

Taha NM, Asklany HT, Mahmoud AH et al (2018) Retinal fluorescein angiography: a sensitive and specific tool to predict coronary slow flow. Egypt Heart J 70:167–171. https://doi.org/10.1016/j.ehj.2018.03.001

Article  PubMed  PubMed Central  Google Scholar 

Rabiolo A, Parravano M, Querques L et al (2017) Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin Ophthalmol 11:803–807. https://doi.org/10.2147/OPTH.S133637

Article  PubMed  PubMed Central  Google Scholar 

Huang D, Swanson EA, Lin CP Schuman JS, Stinson WG, Chang W (1991) Optical coherence tomography. Science 254:1178–1181. https://www.science.org/doi/https://doi.org/10.1126/science.1957169

Minakaran N, de Carvalho ER, Petzold A, Wong SH (2021) Optical coherence tomography (OCT) in neuro-ophthalmology. Eye (Lond) 35:17–32. https://doi.org/10.1038/s41433-020-01288-x

Article  PubMed  Google Scholar 

Orr HC (1948) Fundus photography in colour. Proc R Soc Med 41:721

CAS  PubMed  Google Scholar 

Delori FC, Gragoudas ES, Francisco R, Pruett RC (1977) Monochromatic ophthalmoscopy and fundus photography. The normal fundus. Arch Ophthalmol 95:861–868. https://doi.org/10.1001/archopht.1977.04450050139018

Article  CAS  PubMed  Google Scholar 

Schweitzer D, Schenke S, Hammer M et al (2007) Towards metabolic mapping of the human retina. Microsc Res Tech 70:410–419. https://doi.org/10.1002/jemt.20427

Article  CAS  PubMed  Google Scholar 

Sauer L, Andersen KM, Dysli C, Zinkernagel MS, Bernstein PS, Hammer M (2018) Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy (Erratum). J Biomed Opt 23:1. https://doi.org/10.1117/1.JBO.23.9.099802

Article  PubMed  Google Scholar 

Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66. https://doi.org/10.1002/jemt.10421

Article  CAS  PubMed  Google Scholar 

Sauer L, Calvo CM, Vitale AS, Henrie N, Milliken CM, Bernstein PS (2019) Imaging of hydroxychloroquine toxicity with fluorescence lifetime imaging ophthalmoscopy. Ophthalmol Retina 3:814–825. https://doi.org/10.1016/j.oret.2019.04.025

Article  PubMed  Google Scholar 

Jentsch S, Schweitzer D, Schmidtke KU, Peters S, Dawczynski J, Bar KJ, Hammer M (2015) Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer’s disease. Acta Ophthalmol 93:e241-247. https://doi.org/10.1111/aos.12609

Article  CAS  PubMed  Google Scholar 

Sadda SR, Borrelli E, Fan W, Ebraheem A, Marion KM, Harrington M, Kwon S (2019) A pilot study of fluorescence lifetime imaging ophthalmoscopy in preclinical Alzheimer’s disease. Eye (Lond) 33:1271–1279. https://doi.org/10.1038/s41433-019-0406-2

Article  PubMed  Google Scholar 

Schweitzer D, Deutsch L, Klemm M et al (2015) Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy. J Biomed Opt 20:61106. https://doi.org/10.1117/1.JBO.20.6.061106

Article  PubMed  Google Scholar 

Sauer L, Gensure RH, Andersen KM et al (2018) Patterns of fundus autofluorescence lifetimes in eyes of individuals with nonexudative age-related macular degeneration. Invest Ophthalmol Vis Sci 59:AMD65–AMD77. https://doi.org/10.1167/iovs.17-23764

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammer M, Konigsdorffer E, Liebermann C et al (2008) Ocular fundus auto-fluorescence observations at different wavelengths in patients with age-related macular degeneration and diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 246:105–114. https://doi.org/10.1007/s00417-007-0639-9

Article  PubMed  Google Scholar 

Sparrow JR, Wu Y, Nagasaki T, Yoon KD, Yamamoto K, Zhou J (2010) Fundus autofluorescence and the bisretinoids of retina. Photochem Photobiol Sci 9:1480–1489. https://doi.org/10.1039/c0pp00207k

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miura Y, Bernstein P, Dysli C, Sauer L, Zinkernagel M (2019) Fluorophores in the eye. In: Zinkernagel M, Dysli C (eds) Fluorescence lifetime imaging ophthalmoscopy. Springer, Cham, pp 35–48

Chapter  Google Scholar 

Sonntag SR, Kreikenbohm M, Böhmerle G, Stagge J, Grisanti S, Miura Y (2023) Impact of cigarette smoking on fluorescence lifetime of ocular fundus. Sci Rep 13:11484. https://doi.org/10.1038/s41598-023-37484-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkmann R, Roider J, Birngruber R (2006) Selective retina therapy (SRT): a review on methods, techniques, preclinical and first clinical results. Bull Soc Belge Ophtalmol 302:51–69

Google Scholar 

Roider J, Liew SH, Klatt C et al (2010) Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 248:1263–1272. https://doi.org/10.1007/s00417-010-1356-3

Article  PubMed  Google Scholar 

Wood JP, Shibeeb O, Plunkett M, Casson RJ, Chidlow G (2013) Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser. Invest Ophthalmol Vis Sci 54:2305–2318. https://doi.org/10.1167/iovs.12-11203

Article  PubMed  Google Scholar 

Cohn AC, Wu Z, Jobling AI, Fletcher EL, Guymer RH (2021) Subthreshold nano-second laser treatment and age-related macular degeneration. J Clin Med 10. https://doi.org/10.3390/jcm10030484

Sabal B, Teper S, Wylegala E (2022) Subthreshold micropulse laser for diabetic macular edema: a review. J Clin Med 12. https://doi.org/10.3390/jcm12010274

Lavinsky D, Palanker D (2015) Nondamaging photothermal therapy for the retina: initial clinical experience with chronic central serous retinopathy. Retina 35:213–222. https://doi.org/10.1097/IAE.0000000000000340

Article  CAS  PubMed  Google Scholar 

Hayreh SS, Rubenstein L, Podhajsky P (1993) Argon laser scatter photocoagulation in treatment of branch retinal vein occlusion. A prospective clinical trial. Ophthalmologica 206:1–14. https://doi.org/10.1159/000310354

Article  CAS  PubMed  Google Scholar 

Stitt AW, Gardiner TA, Archer DB (1995) Retinal and choroidal responses to panretinal photocoagulation: an ultrastructural perspective. Graefes Arch Clin Exp Ophthalmol 233:699–705. https://doi.org/10.1007/BF00164672

Article  CAS  PubMed  Google Scholar 

Elsner H, Porksen E, Klatt C et al (2006) Selective retina therapy in patients with central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 244:1638–1645. https://doi.org/10.1007/s00417-006-0368-5

Article  CAS  PubMed  Google Scholar 

Yasui A, Yamamoto M, Hirayama K et al (2017) Retinal sensitivity after selective retina therapy (SRT) on patients with central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 255:243–254. https://doi.org/10.1007/s00417-016-3441-8

Article  PubMed  Google Scholar 

Yamamoto M, Miura Y, Hirayama K et al (2023) Comparative treatment study on macular edema secondary to branch retinal vein occlusion by intravitreal ranibizumab with and without selective retina therapy. Life (Basel) 13:769. https://doi.org/10.3390/life13030769

Article  CAS  PubMed  Google Scholar 

Guymer RH, Chen FK, Hodgson LAB et al (2021) Subthreshold nanosecond laser in age-related macular degeneration: observational extension study of the LEAD clinical trial. Ophthalmol Retina 5:1196–1203. https://doi.org/10.1016/j.oret.2021.02.015

Article  PubMed  Google Scholar 

Richert E, Papenkort J, von der Burchard C et al (2021) Selective retina therapy and thermal stimulation of the retina: different regenerative properties - implications for AMD therapy. BMC Ophthalmol 21:412. https://doi.org/10.1186/s12886-021-02188-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonntag SR, Seifert E, Hamann M et al (2021) Fluorescence lifetime changes induced by laser irradiation: a preclinical study towards the evaluation of retinal metabolic states. Life (Basel) 11. https://doi.org/10.3390/life11060555

Dysli C, Quellec G, Abegg M et al (2014) Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects. Invest Ophthalmol Vis Sci 55:2106–2113. https://doi.org/10.1167/iovs.13-13627

Article  PubMed  Google Scholar 

Dysli C, Wolf S, Hatz K, Zinkernagel MS (2016) Fluorescence lifetime imaging in Stargardt disease: potential marker for disease progression. Invest Ophthalmol Vis Sci 57:832–841. https://doi.org/10.1167/iovs.15-18033

Article  CAS  PubMed  Google Scholar 

Dysli C, Wolf S, Zinkernagel MS (2015) Fluorescence lifetime imaging in retinal artery occlusion. Invest Ophthalmol Vis Sci 56:3329–3336. https://doi.org/10.1167/iovs.14-16203

Article  PubMed  Google Scholar 

Sauer L, Andersen KM, Li B, Gensure RH, Hammer M, Bernstein PS (2018) Fluorescence lifetime imaging ophthalmoscopy (FLIO) of macular pigment. Invest Ophthalmol Vis Sci 59:3094–3103. https://doi.org/10.1167/iovs.18-23886

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif