Correlation of retrobulbar perfusion deficits with glaucomatous visual field defects

Causes of blindness and vision impairment in (2020) and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 9:e144–e160. https://doi.org/10.1016/s2214-109x(20)30489-7

Article  CAS  Google Scholar 

Shah M (2019) Micro-invasive glaucoma surgery - an interventional glaucoma revolution. Eye Vis (Lond) 6:29. https://doi.org/10.1186/s40662-019-0154-1

Article  PubMed  Google Scholar 

Chuangsuwanich T, Tun TA, Braeu FA, Wang X, Chin ZY, Panda SK, Buist M, Strouthidis N, Perera S, Nongpiur M, Aung T, Girard MJA (2023) Differing associations between optic nerve head strains and visual field loss in patients with normal- and high-tension glaucoma. Ophthalmology 130:99–110. https://doi.org/10.1016/j.ophtha.2022.08.007

Article  PubMed  Google Scholar 

Lin D, Wu S, Cheng Y, Yan X, Liu Q, Ren T, Zhang J, Wang N (2023) Early Proteomic characteristics and changes in the optic nerve head, optic nerve, and retina in a rat model of ocular hypertension. Mol Cell Proteomics 22:100654. https://doi.org/10.1016/j.mcpro.2023.100654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713. https://doi.org/10.1001/archopht.120.6.701. (discussion 829-730)

Article  PubMed  Google Scholar 

Kim YW, Park KH (2019) Exogenous influences on intraocular pressure. Br J Ophthalmol 103:1209–1216. https://doi.org/10.1136/bjophthalmol-2018-313381

Article  PubMed  Google Scholar 

Harris A, Kagemann L, Ehrlich R, Rospigliosi C, Moore D, Siesky B (2008) Measuring and interpreting ocular blood flow and metabolism in glaucoma. Can J Ophthalmol 43:328–336. https://doi.org/10.3129/i08-051

Article  PubMed  Google Scholar 

Shin DY, Jeon SJ, Kim EK, Jung KI, Park HYL, Park CK (2019) Association between peripapillary scleral deformation and choroidal microvascular circulation in glaucoma. Sci Rep 9:18503. https://doi.org/10.1038/s41598-019-54882-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satilmis M, Orgül S, Doubler B, Flammer J (2003) Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135:664–669. https://doi.org/10.1016/s0002-9394(02)02156-6

Article  PubMed  Google Scholar 

Chen CL, Bojikian KD, Wen JC, Zhang Q, Xin C, Mudumbai RC, Johnstone MA, Chen PP, Wang RK (2017) Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss. JAMA Ophthalmol 135:461–468. https://doi.org/10.1001/jamaophthalmol.2017.0261

Article  PubMed  PubMed Central  Google Scholar 

Deokule S, Vizzeri G, Boehm AG, Bowd C, Medeiros FA, Weinreb RN (2009) Correlation among choroidal, parapapillary, and retrobulbar vascular parameters in glaucoma. Am J Ophthalmol 147:736-743.e732. https://doi.org/10.1016/j.ajo.2008.10.020

Article  PubMed  Google Scholar 

Moore NA, Harris A, Wentz S, Verticchio Vercellin AC, Parekh P, Gross J, Hussain RM, Thieme C, Siesky B (2017) Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years. Br J Ophthalmol 101:305–308. https://doi.org/10.1136/bjophthalmol-2016-308460

Article  PubMed  Google Scholar 

Hwang JC, Konduru R, Zhang X, Tan O, Francis BA, Varma R, Sehi M, Greenfield DS, Sadda SR, Huang D (2012) Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest Ophthalmol Vis Sci 53:3020–3026. https://doi.org/10.1167/iovs.11-8552

Article  PubMed  PubMed Central  Google Scholar 

Xu S, Huang S, Lin Z, Liu W, Zhong Y (2015) Color Doppler imaging analysis of ocular blood flow velocities in normal tension glaucoma patients: a meta-analysis. J Ophthalmol 2015:919610. https://doi.org/10.1155/2015/919610

Article  PubMed  PubMed Central  Google Scholar 

Spaeth GL (2021) European glaucoma society terminology and guidelines for glaucoma, 5th ed. British J Ophthalmol 105:1–169. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines

Kim J, Dally LG, Ederer F, Gaasterland DE, VanVeldhuisen PC, Blackwell B, Sullivan EK, Prum B, Shafranov G, Beck A, Spaeth GL (2004) The Advanced Glaucoma Intervention Study (AGIS):14. Distinguishing progression of glaucoma from visual field fluctuations. Ophthalmology 111:2109–2116. https://doi.org/10.1016/j.ophtha.2004.06.029

Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet 363:1711–1720. https://doi.org/10.1016/s0140-6736(04)16257-0

Article  PubMed  Google Scholar 

Nesaratnam N, Sarkies N, Martin KR, Shahid H (2015) Pre-operative intraocular pressure does not influence outcome of trabeculectomy surgery: a retrospective cohort study. BMC Ophthalmol 15:17. https://doi.org/10.1186/s12886-015-0007-1

Article  PubMed  PubMed Central  Google Scholar 

Baril C, Vianna JR, Shuba LM, Rafuse PE, Chauhan BC, Nicolela MT (2017) Rates of glaucomatous visual field change after trabeculectomy. Br J Ophthalmol 101:874–878. https://doi.org/10.1136/bjophthalmol-2016-308948

Article  CAS  PubMed  Google Scholar 

Sihota R, Selvan H, Sharma A, Gupta N, Shakrawal J, Angmo D, Dada T, Upadhyay A (2020) Severity of visual field defects in primary congenital glaucoma and their risk factors. Graefes Arch Clin Exp Ophthalmol 258:1483–1491. https://doi.org/10.1007/s00417-020-04677-w

Article  PubMed  Google Scholar 

Gazzard G, Foster PJ, Viswanathan AC, Devereux JG, Oen FT, Chew PT, Khaw PT, Seah SK (2002) The severity and spatial distribution of visual field defects in primary glaucoma: a comparison of primary open-angle glaucoma and primary angle-closure glaucoma. Arch Ophthalmol 120:1636–1643. https://doi.org/10.1001/archopht.120.12.1636

Article  PubMed  Google Scholar 

Park HY, Shin DY, Jeon SJ, Park CK (2019) Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma. JAMA Ophthalmol 137:681–688. https://doi.org/10.1001/jamaophthalmol.2019.0422

Article  PubMed  PubMed Central  Google Scholar 

Stalmans I, Harris A, Fieuws S, Zeyen T, Vanbellinghen V, McCranor L, Siesky B (2009) Color Doppler imaging and ocular pulse amplitude in glaucomatous and healthy eyes. Eur J Ophthalmol 19:580–587. https://doi.org/10.1177/112067210901900410

Article  PubMed  Google Scholar 

Silverman RH, Urs R, Tezel G, Yang X, Nelson I, Ketterling JA (2021) Retrobulbar blood flow in rat eyes during acute elevation of intraocular pressure. Exp Eye Res 207:108606. https://doi.org/10.1016/j.exer.2021.108606

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurysheva NI, Parshunina OA, Shatalova EO, Kiseleva TN, Lagutin MB, Fomin AV (2017) Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res 42:411–417. https://doi.org/10.1080/02713683.2016.1184281

Article  PubMed  Google Scholar 

Zhong Y, Min Y, Jiang Y, Cheng Y, Qin J, Shen X (2009) Color Doppler imaging and pattern visual evoked potential in normal tension glaucoma and hypertension glaucoma. Doc Ophthalmol 119:171–180. https://doi.org/10.1007/s10633-009-9192-7

Article  PubMed  Google Scholar 

Garhöfer G, Fuchsjäger-Mayrl G, Vass C, Pemp B, Hommer A, Schmetterer L (2010) Retrobulbar blood flow velocities in open angle glaucoma and their association with mean arterial blood pressure. Invest Ophthalmol Vis Sci 51:6652–6657. https://doi.org/10.1167/iovs.10-5490

Article  PubMed  Google Scholar 

Zeitz O, Galambos P, Wagenfeld L, Wiermann A, Wlodarsch P, Praga R, Matthiessen ET, Richard G, Klemm M (2006) Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br J Ophthalmol 90:1245–1248. https://doi.org/10.1136/bjo.2006.093633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L (2013) Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 13:36–42. https://doi.org/10.1016/j.coph.2012.09.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidl D, Garhofer G, Schmetterer L (2011) The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 93:141–155. https://doi.org/10.1016/j.exer.2010.09.002

Article  CAS  PubMed  Google Scholar 

Arnold A (2023) Vascular supply of the optic nerve head: implications for optic disc ischaemia. Br J Ophthalmol 107:595–599. https://doi.org/10.1136/bjo-2022-322254

Article  PubMed  Google Scholar 

Grant EG, Benson CB, Moneta GL, Alexandrov AV, Baker JD, Bluth EI, Carroll BA, Eliasziw M, Gocke J, Hertzberg BS, Katanick S, Needleman L, Pellerito J, Polak JF, Rholl KS, Wooster DL, Zierler RE (2003) Carotid artery stenosis: gray-scale and Doppler US diagnosis–Society of Radiologists in Ultrasound Consensus Conference. Radiology 229:340–346. https://doi.org/10.1148/radiol.2292030516

Article  PubMed  Google Scholar 

Xu Y, Qin Z, Wu N, Zhao T, Gu P, Ren B, Li L, Meng X, Liu Y (2021) Retinal and choroidal blood perfusion in patients with bietti crystalline dystrophy. Retina 41:2351–2360. https://doi.org/10.1097/iae.0000000000003182

Article  CAS  PubMed  Google Scholar 

Kuerten D, Fuest M, Walter P, Mazinani B, Plange N (2021) Association of ocular blood flow and contrast sensitivity in normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 259:2251–2257. https://doi.org/10.1007/s00417-021-05235-8

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif