The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses

Abed, J., Emgård, J. E., Zamir, G., Faroja, M., Almogy, G., Grenov, A., Sol, A., Naor, R., Pikarsky, E., Atlan, K. A., et al. (2016). Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host & Microbe,20, 215–225.

Article  CAS  Google Scholar 

Abed, J., Maalouf, N., Parhi, L., Chaushu, S., Mandelboim, O., & Bachrach, G. (2017). Tumor targeting by Fusobacterium nucleatum: A pilot study and future perspectives. Frontiers in Cellular and Infection Microbiology,7, 295.

Article  PubMed  PubMed Central  Google Scholar 

Alam, A., Levanduski, E., Denz, P., Villavicencio, H. S., Bhatta, M., Alhorebi, L., Zhang, Y., Gomez, E. C., Morreale, B., Senchanthisai, S., et al. (2022). Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell,40, 153–167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alanee, S., El-Zawahry, A., Dynda, D., Dabaja, A., McVary, K., Karr, M., & Braundmeier-Fleming, A. (2019). A prospective study to examine the association of the urinary and fecal microbiota with prostate cancer diagnosis after transrectal biopsy of the prostate using 16S RNA gene analysis. The Prostate,79, 81–87.

Article  CAS  PubMed  Google Scholar 

Aneke-Nash, C., Yoon, G., Du, M., & Liang, P. (2021). Antibiotic use and colorectal neoplasia: A systematic review and meta-analysis. BMJ Open Gastroenterology,8, e000601.

Article  PubMed  PubMed Central  Google Scholar 

Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clement, K. (2021). Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology,160, 573–599.

Article  CAS  PubMed  Google Scholar 

Aykut, B., Pushalkar, S., Chen, R., Li, Q., Abengozar, R., Kim, J. I., Shadaloey, S. A., Wu, D., Preiss, P., Verma, N., et al. (2019). The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature,574, 264–267.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagchi, S., Yuan, R., & Engleman, E. G. (2021). Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annual Review of Pathology,16, 223–249.

Article  CAS  PubMed  Google Scholar 

Banerjee, S., Tian, T., Wei, Z., Shih, N., Feldman, M. D., Peck, K. N., DeMichele, A. M., Alwine, J. C., & Robertson, E. S. (2018). Distinct microbial signatures associated with different breast cancer types. Frontiers in Microbiology,9, 951.

Article  PubMed  PubMed Central  Google Scholar 

Baruch, E. N., Youngster, I., Ben-Betzalel, G., Ortenberg, R., Lahat, A., Katz, L., Adler, K., Dick-Necula, D., Raskin, S., Bloch, N., et al. (2021). Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science,371, 602–609.

Article  CAS  PubMed  Google Scholar 

Bender, M. J., McPherson, A. C., Phelps, C. M., Pandey, S. P., Laughlin, C. R., Shapira, J. H., Sanchez, M., Rana, L., Richie, M., Mims, T. G., et al. (2023). Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell,186, 1846–1862.

Article  CAS  PubMed  Google Scholar 

Bergsten, E., Mestivier, D., Donnadieu, F., Pedron, T., Barau, C., Meda, L. T., Mettouchi, A., Lemichez, E., Gorgette, O., Chamaillard, M., et al. (2023). Parvimonas micra, an oral pathobiont associated with colorectal cancer, epigenetically reprograms human colonocytes. Gut Microbes,15, 2265138.

Article  PubMed  PubMed Central  Google Scholar 

Boursi, B., Mamtani, R., Haynes, K., & Yang, Y. X. (2015). Recurrent antibiotic exposure may promote cancer formation—Another step in understanding the role of the human microbiota? European Journal of Cancer,51, 2655–2664.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., Ghissassi, E., Benbrahim-Tallaa, F., Guha, L., Freeman, N., Galichet, C., et al. (2009). A review of human carcinogens—Part B: Biological agents. The Lancet Oncology,10, 321–322.

Article  PubMed  Google Scholar 

Brechot, C. (2004). Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: Old and new paradigms. Gastroenterology,127, S56–S61.

Article  CAS  PubMed  Google Scholar 

Brestoff, J. R., & Artis, D. (2013). Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology,14, 676–684.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byndloss, M. X., Olsan, E. E., Rivera-Chávez, F., Tiffany, C. R., Cevallos, S. A., Lokken, K. L., Torres, T. P., Byndloss, A. J., Faber, F., Gao, Y., et al. (2017). Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science,357, 570–575.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byrd, D. A., Vogtmann, E., Wu, Z., Han, Y., Wan, Y., Clegg-Lamptey, J. N., Yarney, J., Wiafe-Addai, B., Wiafe, S., Awuah, B., et al. (2021). Associations of fecal microbial profiles with breast cancer and nonmalignant breast disease in the Ghana breast health study. International Journal of Cancer,148, 2712–2723.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cameron, S. J. S., Lewis, K. E., Huws, S. A., Hegarty, M. J., Lewis, P. D., Pachebat, J. A., & Mur, L. A. J. (2017). A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS ONE,12, e0177062.

Article  PubMed  PubMed Central  Google Scholar 

Cao, Y., Wu, K., Mehta, R., Drew, D. A., Song, M., Lochhead, P., Nguyen, L. H., Izard, J., Fuchs, C. S., Garrett, W. S., et al. (2018). Long-term use of antibiotics and risk of colorectal adenoma. Gut,67, 672–678.

CAS  PubMed  Google Scholar 

Casasanta, M. A., Yoo, C. C., Udayasuryan, B., Sanders, B. E., Umaña, A., Zhang, Y., Peng, H., Duncan, A. J., Wang, Y., Li, L., et al. (2020). Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Science Signaling,13, eaba9157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, Y., Huang, Z., Hou, F., Liu, Y., Wang, L., Wang, Z., Sun, Y., Pan, Z., Tan, Y., Ding, L., et al. (2023). Parvimonas micra activates the RAS/ERK/c-FOS pathway by upregulating mir-218-5p to promote colorectal cancer progression. Journal of Experimental & Clinical Cancer Research,42, 13.

Article  CAS  Google Scholar 

Chaput, N., Lepage, P., Coutzac, C., Soularue, E., Le Roux, K., Monot, C., Boselli, L., Routier, E., Cassard, L., Collins, M., et al. (2017). Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with Ipilimumab. Annals of Oncology,28, 1368–1379.

Article  CAS  PubMed  Google Scholar 

Chen, S., Su, T., Zhang, Y., Lee, A., He, J., Ge, Q., Wang, L., Si, J., Zhuo, W., & Wang, L. (2020). Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7. Gut Microbes,11, 511–525.

Article  PubMed  PubMed Central  Google Scholar 

Chen, S., Zhang, L., Li, M., Zhang, Y., Sun, M., Wang, L., Lin, J., Cui, Y., Chen, Q., Jin, C., et al. (2022). Fusobacterium nucleatum reduces METTL3-mediated m6a modification and contributes to colorectal cancer metastasis. Nature Communications,13, 1248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu, S., Cheng, Z., Yin, Z., Xu, J., Wu, F., Jin, Y., & Yang, G. (2022). Airway Fusobacterium is associated with poor response to immunotherapy in lung cancer. OncoTargets and Therapy,15, 201–213.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cogdill, A. P., Gaudreau, P. O., Arora, R., Gopalakrishnan, V., & Wargo, J. A. (2018). The impact of intratumoral and gastrointestinal microbiota on systemic cancer therapy. Trends in Immunology,39, 900–920.

Article  CAS  PubMed  Google Scholar 

Coker, O. O., Nakatsu, G., Dai, R. Z., Wu, W. K. K., Wong, S. H., Ng, S. C., Chan, F. K. L., Sung, J. J. Y., & Yu, J. (2019). Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut,68, 654–662.

Article  CAS  PubMed  Google Scholar 

Coutzac, C., Jouniaux, J. M., Paci, A., Schmidt, J., Mallardo, D., Seck, A., Asvatourian, V., Cassard, L., Saulnier, P., Lacroix, L., et al. (2020). Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nature Communications,11, 2168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cullin, N., Antunes, A., Straussman, C., Stein-Thoeringer, R., & Elinav, E. (2021). Microbiome and cancer. Cancer Cell,39, 1317–1341.

Article  CAS  PubMed  Google Scholar 

Davar, D., Dzutsev, A. K., McCulloch, J. A., Rodrigues, R. R., Chauvin, J. M., Morrison, R. M., Deblasio, R. N., Menna, C., Ding, Q., Pagliano, O., et al. (2021). Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science,371, 595–602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Miguel, M., & Calvo, E. (2020). Clinical challenges of immune checkpoint inhibitors. Cancer Cell,38, 326–333.

Article  PubMed  Google Scholar 

DeFilipp, Z., Bloom, P. P., Torres Soto, M., Mansour, M. K., Sater, M. R. A., Huntley, M. H., Turbett, S., Chung, R. T., Chen, Y. B., & Hohmann, E. L. (2019). Drug-resistant E. Coli bacteremia transmitted by fecal microbiota transplant. The New England Journal of Medicine,381, 2043–2050.

Article  PubMed 

留言 (0)

沒有登入
gif