Exploring the Therapeutic Potential of Scorpion-Derived Css54 Peptide Against Candida albicans

Aguiar, F. L. L., Santos, N. C., de Paula Cavalcante, C. S., Andreu, D., Baptista, G. R., & Gonçalves, S. (2020). Antibiofilm activity on Candida albicans and mechanism of action on biomembrane models of the antimicrobial peptide Ctn [15–34]. International Journal of Molecular Sciences, 21, 8339.

Article  PubMed  PubMed Central  Google Scholar 

Berman, J., & Krysan, D. J. (2020). Drug resistance and tolerance in fungi. Nature Reviews Microbiology, 18, 319–331.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertolini, M., Ranjan, A., Thompson, A., Diaz, P. I., Sobue, T., Maas, K., & Dongari-Bagtzoglou, A. (2019). Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathogens, 15, e1007717.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattacharyya, A., Sinha, M., Singh, H., Patel, R. S., Ghosh, S., Sardana, K., Ghosh, S., & Sengupta, S. (2020). Mechanistic insight into the antifungal effects of a fatty acid derivative against drug-resistant fungal infections. Frontiers in Microbiology, 11, 2116.

Article  PubMed  PubMed Central  Google Scholar 

Buakaew, W., Pankla Sranujit, R., Noysang, C., Krobthong, S., Yingchutrakul, Y., Thongsri, Y., Potup, P., Daowtak, K., & Usuwanthim, K. (2022). Proteomic analysis reveals proteins involved in the mode of action of β-Citronellol identified from Citrus hystrix DC. Leaf against Candida albicans. Frontiers in Microbiology, 13, 894637.

Article  PubMed  PubMed Central  Google Scholar 

Buda De Cesare, G., Cristy, S. A., Garsin, D. A., & Lorenz, M. C. (2020). Antimicrobial peptides: a new frontier in antifungal therapy. mBio, 11, e02123-e2220.

Article  PubMed  PubMed Central  Google Scholar 

Costa-de-Oliveira, S., & Rodrigues, A. G. (2020). Candida albicans antifungal resistance and tolerance in bloodstream infections: The triad yeast-host-antifungal. Microorganisms, 8, 154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dabbagh Moghaddam, F., Akbarzadeh, I., Marzbankia, E., Farid, M., Khaledi, L., Reihani, A. H., Javidfar, M., & Mortazavi, P. (2021). Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnology, 12, 14.

Article  CAS  Google Scholar 

do Nascimento Dias, J., de Souza Silva, C., de Araújo, A. R., Souza, J. M. T., de Holanda Veloso Junior, P. H., Cabral, W. F., da Glória da Silva, M., Eaton, P., de Souza de Almeida Leite, J. R., Nicola, A. M., et al. (2020). Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-57 against Candida albicans planktonic and biofilm cells. Scientific Reports, 10, 10327.

Article  PubMed  PubMed Central  Google Scholar 

Dong, N., Chou, S., Li, J., Xue, C., Li, X., Cheng, B., Shan, A., & Xu, L. (2018). Short symmetric-end antimicrobial peptides centered on β-turn amino acids unit improve selectivity and stability. Frontiers in Microbiology, 9, 2832.

Article  PubMed  PubMed Central  Google Scholar 

Fisher, M. C., Alastruey-Izquierdo, A., Berman, J., Bicanic, T., Bignell, E. M., Bowyer, P., Bromley, M., Brüggemann, R., Garber, G., Cornely, O. A., et al. (2022). Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 20, 557–571.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia, F., Villegas, E., Espino-Solis, G. P., Rodriguez, A., Paniagua-Solis, J. F., Sandoval-Lopez, G., Possani, L. D., & Corzo, G. (2013). Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. The Journal of Antibiotics, 66, 3–10.

Article  CAS  PubMed  Google Scholar 

Garvey, M., Meade, E., & Rowan, N. J. (2022). Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. Science of the Total Environment, 851, 158284.

Article  CAS  PubMed  Google Scholar 

Gulati, M., & Nobile, C. J. (2016). Candida albicans biofilms: Development, regulation, and molecular mechanisms. Microbes and Infection, 18, 310–321.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, J., Jyoti, M. A., Song, H. Y., & Jang, W. S. (2016). Antifungal activity and action mechanism of histatin 5-halocidin hybrid peptides against Candida ssp. PLoS ONE, 11, e0150196.

Article  PubMed  PubMed Central  Google Scholar 

Jang, W. S., Bajwa, J. S., Sun, J. N., & Edgerton, M. (2010). Salivary histatin 5 internalization by translocation, but not endocytosis, is required for fungicidal activity in Candida albicans. Molecular Microbiology, 77, 354–370.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, S., & Lee, D. G. (2019). Role of calcium in reactive oxygen species-induced apoptosis in Candida albicans: An antifungal mechanism of antimicrobial peptide, PMAP-23. Free Radical Research, 53, 8–17.

Article  CAS  PubMed  Google Scholar 

Lamiyan, A. K., Dalal, R., & Kumar, N. R. (2020). Venom peptides in association with standard drugs: A novel strategy for combating antibiotic resistance-an overview. Journal of Venomous Animals and Toxins including Tropical Diseases, 26, e20200001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H., Hwang, J. S., Lee, J., Kim, J. I., & Lee, D. G. (2015). Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochimica Et Biophysica Acta, 1848, 634–642.

Article  CAS  PubMed  Google Scholar 

Lee, Y., Puumala, E., Robbins, N., & Cowen, L. E. (2020). Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond. Chemical Reviews, 121, 3390–3411.

Article  PubMed  PubMed Central  Google Scholar 

Liu, T., Pang, Q., Mai, K., He, X., Xu, L., Zhou, F., & Liu, Y. (2022). Silver nanoparticle@carbon quantum dot composite as an antibacterial agent. RSC Advances, 12, 9621–9627.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopes, J. P., & Lionakis, M. S. (2022). Pathogenesis and virulence of Candida albicans. Virulence, 13, 89–121.

Article  CAS  PubMed  Google Scholar 

Madanchi, H., Rahmati, S., Doaei, Y., Sardari, S., Maleki, M. S. M., Rostamian, M., Kiasari, R. E., Mousavi, S. J. S., Ghods, E., & Ardekanian, M. (2022). Determination of antifungal activity and action mechanism of the modified Aurein 1.2 peptide derivatives. Microbial Pathogenesis, 173, 105866.

Article  CAS  PubMed  Google Scholar 

Nasr, S., Borges, A., Sahyoun, C., Nasr, R., Roufayel, R., Legros, C., Sabatier, J. M., & Fajloun, Z. (2023). Scorpion venom as a source of antimicrobial peptides: Overview of biomolecule separation, analysis and characterization methods. Antibiotics, 12, 1380.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh, J. H., Park, J., & Park, Y. (2022). Anti-biofilm and anti-inflammatory effects of Lycosin-II isolated from spiders against multi-drug resistant bacteria. Biochimica Et Biophysica Acta Biomembranes, 1864, 183769.

Article  CAS  PubMed  Google Scholar 

Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4, 18026.

Article  PubMed  Google Scholar 

Park, J. H., Kim, K. H., Lee, W. R., Han, S. M., & Park, K. K. (2012). Protective effect of melittin on inflammation and apoptosis in acute liver failure. Apoptosis, 17, 61–69.

Article  CAS  PubMed  Google Scholar 

Park, J., Oh, J. H., Kang, H. K., Choi, M. C., Seo, C. H., & Park, Y. (2020). Scorpion-venom-derived antimicrobial peptide Css54 exerts potent antimicrobial activity by disrupting bacterial membrane of zoonotic bacteria. Antibiotics, 9, 831.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radhakrishnan, V. S., Reddy Mudiam, M. K., Kumar, M., Dwivedi, S. P., Singh, S. P., & Prasad, T. (2018). Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). International Journal of Nanomedicine, 13, 2647–2663.

Article  PubMed  Google Scholar 

Ramamourthy, G., Park, J., Seo, C., Vogel, J. H., & Park, Y. (2020). Antifungal and antibiofilm activities and the mechanism of action of repeating lysine-tryptophan peptides against Candida albicans. Microorganisms, 8, 758.

Article  PubMed  PubMed Central  Google Scholar 

Rincón-Cortés, C. A., Bayona-Rojas, M. A., Reyes-Montaño, E. A., & Vega-Castro, N. A. (2022). Antimicrobial activity developed by scorpion venoms and its peptide component. Toxins, 14, 740.

Article  PubMed  PubMed Central  Google Scholar 

Seyedjavadi, S. S., Khani, S., Eslamifar, A., Ajdary, S., Goudarzi, M., Halabian, R., Akbari, R., Zare-Zardini, H., Imani Fooladi, A. A., Amani, J., et al. (2020). The antifungal peptide MCh-AMP1 derived from Matricaria chamomilla inhibits Candida albicans growth via inducing ROS generation and altering fungal cell membrane permeability. Frontiers in Microbiology, 10, 3150.

Article  PubMed  PubMed Central  Google Scholar 

Seyoum, E., Bitew, A., & Mihret, A. (2020). Distribution of Candida albicans and non-albicans Candida species isolated in different clinical samples and their in vitro antifungal suscetibity profile in Ethiopia. BMC Infectious Diseases, 20, 231.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif