LncRNA GAS8-AS1 dinucleotide genetic variantn.713A>G, n.714T>C is associated with early-stage disease, lymph node, and distant metastasis in differentiated thyroid cancer

G. Pellegriti, F. Frasca, C. Regalbuto, S. Squatrito, R. Vigneri, Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013, 965212 (2013). https://doi.org/10.1155/2013/965212

Article  PubMed  PubMed Central  Google Scholar 

K. LeClair, K.J.L. Bell, L. Furuya-Kanamori, S.A. Doi, D.O. Francis, L. Davies, Evaluation of Gender Inequity in Thyroid Cancer Diagnosis: Differences by Sex in US Thyroid Cancer Incidence Compared With a Meta-analysis of Subclinical Thyroid Cancer Rates at Autopsy. JAMA Intern Med. 181(10), 1351–1358 (2021). https://doi.org/10.1001/jamainternmed.2021.4804

Article  PubMed  Google Scholar 

A.S. Alzahrani, H. Alomar, N. Alzahrani, Thyroid Cancer in Saudi Arabia: A Histopathological and Outcome Study. Int J. Endocrinol. 2017, 8423147 (2017). https://doi.org/10.1155/2017/8423147

Article  PubMed  PubMed Central  Google Scholar 

C. Christofer Juhlin, O. Mete, Z.W. Baloch, The 2022 WHO classification of thyroid tumors: novel concepts in nomenclature and grading. Endocr. Relat. Cancer 30(2), e220293 (2023). https://doi.org/10.1530/erc-22-0293.

Article  CAS  PubMed  Google Scholar 

M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13(3), 184–199 (2013). https://doi.org/10.1038/nrc3431

Article  CAS  PubMed  PubMed Central  Google Scholar 

A.K. Murugan, E. Qasem, H. Al-Hindi, Y. Shi, A.S. Alzahrani, Classical V600E and other non-hotspot BRAF mutations in adult differentiated thyroid cancer. J. Transl. Med 14(1), 204 (2016). https://doi.org/10.1186/s12967-016-0958-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Grieco, M. Santoro, M.T. Berlingieri, R.M. Melillo, R. Donghi, I. Bongarzone, M.A. Pierotti, G. Della Porta, A. Fusco, G. Vecchio, PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60(4), 557–563 (1990). https://doi.org/10.1016/0092-8674(90)90659-3

Article  CAS  PubMed  Google Scholar 

P. Raman, R.J. Koenig, Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat. Rev. Endocrinol. 10(10), 616–623 (2014). https://doi.org/10.1038/nrendo.2014.115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

X. Liu, J. Bishop, Y. Shan, S. Pai, D. Liu, A.K. Murugan, H. Sun, A.K. El-Naggar, M. Xing, Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer 20(4), 603–610 (2013). https://doi.org/10.1530/ERC-13-0210

Article  CAS  PubMed  PubMed Central  Google Scholar 

A.K. Murugan, J. Dong, J. Xie, M. Xing, Uncommon GNAQ, MMP8, AKT3, EGFR, and PIK3R1 mutations in thyroid cancers. Endocr. Pathol. 22(2), 97–102 (2011). https://doi.org/10.1007/s12022-011-9155-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agrawal et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3), 676–690 (2014). https://doi.org/10.1016/j.cell.2014.09.050

Article  CAS  PubMed Central  Google Scholar 

A.K. Murugan, E. Qasem, H. Al-Hindi, A.S. Alzahrani, GPCR-mediated PI3K pathway mutations in pediatric and adult thyroid cancer. Oncotarget 10(41), 4107–4124 (2019). https://doi.org/10.18632/oncotarget.26993

Article  PubMed  PubMed Central  Google Scholar 

I. Landa, T. Ibrahimpasic, L. Boucai, R. Sinha, J.A. Knauf, R.H. Shah, S. Dogan, J.C. Ricarte-Filho, G.P. Krishnamoorthy, B. Xu, N. Schultz, M.F. Berger, C. Sander, B.S. Taylor, R. Ghossein, I. Ganly, J.A. Fagin, Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Invest 126(3), 1052–1066 (2016). https://doi.org/10.1172/JCI85271

Article  PubMed  PubMed Central  Google Scholar 

A.K. Murugan, M. Xing, Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 71(13), 4403–4411 (2011). https://doi.org/10.1158/0008-5472.CAN-10-4041

Article  CAS  PubMed  PubMed Central  Google Scholar 

A.K. Murugan, R. Liu, M. Xing, Identification and characterization of two novel oncogenic mTOR mutations. Oncogene 38(26), 5211–5226 (2019). https://doi.org/10.1038/s41388-019-0787-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Lirov, F.P. Worden, M.S. Cohen, The Treatment of Advanced Thyroid Cancer in the Age of Novel Targeted Therapies. Drugs 77(7), 733–745 (2017). https://doi.org/10.1007/s40265-017-0733-1

Article  PubMed  PubMed Central  Google Scholar 

J.W. Wei, K. Huang, C. Yang, C.S. Kang, Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep. 37(1), 3–9 (2017). https://doi.org/10.3892/or.2016.5236

Article  PubMed  Google Scholar 

A.K. Murugan, A.K. Munirajan, A.S. Alzahrani, MicroRNAs: Modulators of the Ras Oncogenes in Oral Cancer. J. Cell Physiol. 231(7), 1424–1431 (2016). https://doi.org/10.1002/jcp.25269

Article  CAS  PubMed  Google Scholar 

J.S. Mattick, P.P. Amaral, P. Carninci, S. Carpenter, H.Y. Chang, L.L. Chen, R. Chen, C. Dean, M.E. Dinger, K.A. Fitzgerald, T.R. Gingeras, M. Guttman, T. Hirose, M. Huarte, R. Johnson, C. Kanduri, P. Kapranov, J.B. Lawrence, J.T. Lee, J.T. Mendell, T.R. Mercer, K.J. Moore, S. Nakagawa, J.L. Rinn, D.L. Spector, I. Ulitsky, Y. Wan, J.E. Wilusz, M. Wu, Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023). https://doi.org/10.1038/s41580-022-00566-8

Article  CAS  PubMed  Google Scholar 

A.K. Murugan, A.K. Munirajan, A.S. Alzahrani, Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocr. Relat. Cancer 25(2), R59–R82 (2018). https://doi.org/10.1530/ERC-17-0188

W. Pan, L. Zhou, M. Ge, B. Zhang, X. Yang, X. Xiong, G. Fu, J. Zhang, X. Nie, H. Li, X. Tang, J. Wei, M. Shao, J. Zheng, Q. Yuan, W. Tan, C. Wu, M. Yang, D. Lin, Whole exome sequencing identifies lncRNA GAS8-AS1 and LPAR4 as novel papillary thyroid carcinoma driver alternations. Hum. Mol. Genet 25(9), 1875–1884 (2016). https://doi.org/10.1093/hmg/ddw056

Article  CAS  PubMed  Google Scholar 

Z. Li, G. Yue, M. Li, D. Yang, C. Yue, W. Hu, H. Lu, LncRNA GAS8-AS1 is a Novel Prognostic and Diagnostic Biomarker for Pancreatic Cancer. Crit. Rev. Eukaryot. Gene Expr. 32(4), 83–92 (2022). https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022039770

Article  PubMed  Google Scholar 

W. Pan, N. Zhang, W. Liu, J. Liu, L. Zhou, Y. Liu, M. Yang, The long noncoding RNA GAS8-AS1 suppresses hepatocarcinogenesis by epigenetically activating the tumor suppressor GAS8. J. Biol. Chem. 293(44), 17154–17165 (2018). https://doi.org/10.1074/jbc.RA118.003055

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Zhao, Y. Chu, J. Sun, R. Song, Y. Li, F. Xu, LncRNA GAS8-AS inhibits colorectal cancer (CRC) cell proliferation by downregulating lncRNA AFAP1-AS1. Gene 710, 140–144 (2019). https://doi.org/10.1016/j.gene.2019.05.040

Article  CAS  PubMed  Google Scholar 

Y. Qin, W. Sun, H. Zhang, P. Zhang, Z. Wang, W. Dong, L. He, T. Zhang, L. Shao, W. Zhang, C. Wu, LncRNA GAS8-AS1 inhibits cell proliferation through ATG5-mediated autophagy in papillary thyroid cancer. Endocrine 59(3), 555–564 (2018). https://doi.org/10.1007/s12020-017-1520-1

Article  CAS  PubMed  Google Scholar 

A.S. Alzahrani, M. Alswailem, Y. Moria, R. Almutairi, M. Alotaibi, A.K. Murugan, E. Qasem, B. Alghamdi, H. Al-Hindi, Lung Metastasis in Pediatric Thyroid Cancer: Radiological Pattern, Molecular Genetics, Response to Therapy, and Outcome. J. Clin. Endocrinol. Metab. 104(1), 103–110 (2019). https://doi.org/10.1210/jc.2018-01690

Article  PubMed  Google Scholar 

M. Miladi, M. Raden, S. Diederichs, R. Backofen, MutaRNA: analysis and visualization of mutation-induced changes in RNA structure. Nucleic Acids Res 48(W1), W287–W291 (2020). https://doi.org/10.1093/nar/gkaa331

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Raden, S.M. Ali, O.S. Alkhnbashi, A. Busch, F. Costa, J.A. Davis, F. Eggenhofer, R. Gelhausen, J. Georg, S. Heyne, M. Hiller, K. Kundu, R. Kleinkauf, S.C. Lott, M.M. Mohamed, A. Mattheis, M. Miladi, A.S. Richter, S. Will, J. Wolff, P.R. Wright, R. Backofen, Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res 46(W1), W25–W29 (2018). https://doi.org/10.1093/nar/gky329

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Salari, C. Kimchi-Sarfaty, M.M. Gottesman, T.M. Przytycka, Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies. Nucleic Acids Res 41(1), 44–53 (2013). https://doi.org/10.1093/nar/gks1009

Article  CAS  PubMed  Google Scholar 

R. Lorenz, S.H. Bernhart, C. Höner Zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler, I.L. Hofacker, ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011). https://doi.org/10.1186/1748-7188-6-26

Article  PubMed  PubMed Central  Google Scholar 

M. Xing, R. Liu, X. Liu, A.K. Murugan, G. Zhu, M.A. Zeiger, S. Pai, J. Bishop, BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol. 32(25), 2718–2726 (2014). https://doi.org/10.1200/JCO.2014.55.5094

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif