Hyalocytes—guardians of the vitreoretinal interface

Hannover A (1840) Cited in: Hamburg (1959): Some investigations on the cells of the vitreous body. Ophthalmologica 138:81–107

Google Scholar 

Virchow R (1852) Archiv für pathologische Anatomie und Physiologie und für klinische Medizin. Springer

Google Scholar 

Potiechin A (1878) Ueber die Zellen des Glaskörpers. Archiv f pathol Anat 72:157–165. https://doi.org/10.1007/BF01878762

Article  Google Scholar 

Schwalbe G (1874) Mikroskopische Anatomie des Sehnerven, der Netzhaut und des Glaskörpers. Handbuch der Allgemeinen Augenheilkunde

Lopéz Enríquez M, Costero I (1931) Sobre los carateres de la microglia retinania emigrada al humor vítreo. Bol Soc Espan Hist Nat 425–431

Szirmai JA, Balazs EA (1958) Studies on the structure of the vitreous body: III. Cells in the cortical layer. AMA Arch Ophthalmol 59:34–48

Article  CAS  PubMed  Google Scholar 

Sebag J, Niemeyer M, Koss MJ (2014) Anomalous posterior vitreous detachment and vitreoschisis. In: Sebag J (ed) Vitreous – in Health and Disease. Springer, New York. https://doi.org/10.1007/978-1-4939-1086-1_14

Chapter  Google Scholar 

Migacz JV, Otero-Marquez O, Zhou R et al (2022) Imaging of vitreous cortex hyalocyte dynamics using non-confocal quadrant-detection adaptive optics scanning light ophthalmoscopy in human subjects. Biomed Opt Express 13:1755–1773. https://doi.org/10.1364/BOE.449417

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wieghofer P, Engelbert M, Chui TY et al (2022) Hyalocyte origin, structure, and imaging. Expert Rev Ophthalmol 17(4):233–248. https://doi.org/10.1080/17469899.2022.2100762

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boneva SK, Wolf J, Rosmus D-D et al (2020) Transcriptional profiling uncovers human hyalocytes as a unique innate immune cell population. Front Immunol 11:567274. https://doi.org/10.3389/fimmu.2020.567274

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlecht A, Boneva S, Salie H et al (2021) Imaging mass cytometry for high-dimensional tissue profiling in the eye. BMC Ophthalmol 21:338. https://doi.org/10.1186/s12886-021-02099-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laich Y, Wolf J, Hajdu RI et al (2022) Single-cell protein and transcriptional characterization of epiretinal membranes from patients with proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 63:17. https://doi.org/10.1167/iovs.63.5.17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones CH, Gui W, Schumann RG et al (2022) Hyalocytes in proliferative vitreo-retinal diseases. Expert Rev Ophthalmol 17:263–280. https://doi.org/10.1080/17469899.2022.2100764

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boneva SK, Wolf J, Wieghofer P et al (2022) Hyalocyte functions and immunology. Expert Rev Ophthalmol 17(4):249–262. https://doi.org/10.1080/17469899.2022.2100763

Article  CAS  Google Scholar 

Kingston Z, Provis J, Madigan MC (2004) Development and developmental disorders of vitreous. In: Sebag J (ed) Vitreous - Health Disease. Springer, New York, pp 95–112

Google Scholar 

Zhu M, Provis JM, Penfold PL (1999) The human hyaloid system: cellular phenotypes and inter-relationships. Exp Eye Res 68:553–563. https://doi.org/10.1006/exer.1998.0632

Article  CAS  PubMed  Google Scholar 

Diez-Roux G, Lang RA (1997) Macrophages induce apoptosis in normal cells in vivo. Development 124:3633–3638. https://doi.org/10.1242/dev.124.18.3633

Article  CAS  PubMed  Google Scholar 

Lang RA, Bishop JM (1993) Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74:453–462. https://doi.org/10.1016/0092-8674(93)80047-i

Article  CAS  PubMed  Google Scholar 

Lobov IB, Rao S, Carroll TJ et al (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437:417–421. https://doi.org/10.1038/nature03928

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dumas AA, Borst K, Prinz M (2021) Current tools to interrogate microglial biology. Neuron 109:2805–2819. https://doi.org/10.1016/j.neuron.2021.07.004

Article  CAS  PubMed  Google Scholar 

Wieghofer P, Knobeloch K-P, Prinz M (2015) Genetic targeting of microglia. Glia 63:1–22. https://doi.org/10.1002/glia.22727

Article  PubMed  Google Scholar 

Gloor BP (1969) Cellular proliferation on the vitreous surface after photocoagulation. Albrecht Von Graefes Arch Klin Exp Ophthalmol 178:99–113. https://doi.org/10.1007/BF00414375

Article  CAS  PubMed  Google Scholar 

Haddad A, André JC (1998) Hyalocyte-like cells are more numerous in the posterior chamber than they are in the vitreous of the rabbit eye. Exp Eye Res 66:709–718. https://doi.org/10.1006/exer.1997.0476

Article  CAS  PubMed  Google Scholar 

Qiao H, Hisatomi T, Sonoda K-H et al (2005) The characterisation of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol 89:513–517. https://doi.org/10.1136/bjo.2004.050658

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wieghofer P, Hagemeyer N, Sankowski R et al (2021) Mapping the origin and fate of myeloid cells in distinct compartments of the eye by single-cell profiling. EMBO J n/a:e105123. https://doi.org/10.15252/embj.2020105123

Article  CAS  Google Scholar 

Wolf J, Boneva S, Rosmus D-D et al (2022) Deciphering the molecular signature of human hyalocytes in relation to other innate immune cell populations. Invest Ophthalmol Vis Sci 63:9. https://doi.org/10.1167/iovs.63.3.9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sebag J (1989) Functions of the vitreous. In: Sebag J (ed) The vitreous: structure, function, and pathobiology. Springer, New York, NY, pp 59–71

Chapter  Google Scholar 

Ogawa K (2002) Scanning electron microscopic study of hyalocytes in the guinea pig eye. Arch Histol Cytol 65:263–268. https://doi.org/10.1679/aohc.65.263

Article  PubMed  Google Scholar 

Xu Q, Wang Y, Dabdoub A et al (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–895. https://doi.org/10.1016/s0092-8674(04)00216-8

Article  CAS  PubMed  Google Scholar 

Lange CA, Luhmann UF, Mowat FM et al (2012) Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development. Development. https://doi.org/10.1242/dev.070813

Article  PubMed  PubMed Central  Google Scholar 

Lutty GA, Merges C, Threlkeld AB et al (1993) Heterogeneity in localization of isoforms of TGF-beta in human retina, vitreous, and choroid. Invest Ophthalmol Vis Sci 34:477–487

CAS  PubMed  Google Scholar 

Sukhikh GT, Panova IG, Smirnova YA et al (2010) Expression of transforming growth factor-β2in vitreous body and adjacent tissues during prenatal development of human eye. Bull Exp Biol Med 150:117–121. https://doi.org/10.1007/s10517-010-1084-z

Article  CAS  PubMed  Google Scholar 

Bishop P (1996) The biochemical structure of mammalian vitreous. Eye 10:664–670. https://doi.org/10.1038/eye.1996.159

Article  PubMed  Google Scholar 

Sebag J (2010) Vitreous anatomy, aging, and anomalous posterior vitreous detachment encyclopedia of the eye. Elsevier, pp 307–315

Google Scholar 

Cain SA, Morgan A, Sherratt MJ et al (2006) Proteomic analysis of fibrillin-rich microfibrils. Proteomics 6:111–122. https://doi.org/10.1002/pmic.200401340

Article  CAS  PubMed  Google Scholar 

Kamei A, Totani A (1982) Isolation and characterization of minor glycosaminoglycans in the rabbit vitreous body. Biochem Biophys Res Commun 109:881–887. https://doi.org/10.1016/0006-291x(82)92022-8

Article  CAS  PubMed  Google Scholar 

Miyamoto T, Inoue H, Sakamoto Y et al (2005) Identification of a novel splice site mutation of the CSPG2 gene in a Japanese family with Wagner syndrome. Invest Ophthalmol Vis Sci 46:2726–2735. https://doi.org/10.1167/iovs.05-0057

Article  PubMed  Google Scholar 

Iwanoff A (1865) Beiträge zur normalen und pathologischen Anatomie des Auges. Archiv für Opthalmologie 11:135–170. https://doi.org/10.1007/BF02720906

Article  Google Scholar 

Castanos MV, Zhou DB, Linderman RE et al (2020) Imaging of macrophage-like cells in living human retina using clinical OCT. Invest Ophthalmol Vis Sci 61:48. https://doi.org/10.1167/iovs.61.6.48

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madry C, Kyrargyri V, Arancibia-Cárcamo IL et al (2018) Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron 97:299-312.e6. https://doi.org/10.1016/j.neuron.2017.12.002

留言 (0)

沒有登入
gif