Novel SPEF2 variants cause male infertility and likely primary ciliary dyskinesia

Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, De Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care, 2017. Hum Reprod. 2017;32(9):1786–801. https://doi.org/10.1093/humrep/dex234.

Article  PubMed  PubMed Central  Google Scholar 

Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82. https://doi.org/10.1016/s0015-0282(02)03105-9.

Article  PubMed  Google Scholar 

Vander Borght M, Wyns C Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;622–10. https://doi.org/10.1016/j.clinbiochem.2018.03.012.

Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45. https://doi.org/10.1093/humupd/dmp048.

Article  PubMed  Google Scholar 

He X, Liu C, Yang X, Lv M, Ni X, Li Q, et al. Bi-allelic loss-of-function variants in CFAP58 cause flagellar axoneme and mitochondrial sheath defects and asthenoteratozoospermia in humans and mice. Am J Hum Genet. 2020;107(3):514–26. https://doi.org/10.1016/j.ajhg.2020.07.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu C, Cong J, Zhang Q, He X, Zheng R, Yang X, et al. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am J Hum Genet. 2021;108(8):1466–77. https://doi.org/10.1016/j.ajhg.2021.06.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paff T, Omran H, Nielsen KG, Haarman EG. Current and future treatments in primary ciliary dyskinesia. Int J Mol Sci. 2021;22(18). https://doi.org/10.3390/ijms22189834.

Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci. 2020;77(11):2029–48. https://doi.org/10.1007/s00018-019-03389-7.

Article  CAS  PubMed  Google Scholar 

Jayasena CN, Sironen A. diagnostics and management of male infertility in primary ciliary dyskinesia. Diagnostics (Basel). 2021;11(9). https://doi.org/10.3390/diagnostics11091550.

Newman L, Chopra J, Dossett C, Shepherd E, Bercusson A, Carroll M, et al. The impact of primary ciliary dyskinesia on female and male fertility: a narrative review. Hum Reprod Update. 2023;29(3):347–67. https://doi.org/10.1093/humupd/dmad003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Li Y, Wang Y, Meng L, Tan C, Du J, et al. Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility. J Assist Reprod Genet. 2023;40(1):41–51. https://doi.org/10.1007/s10815-022-02681-z.

Article  PubMed  Google Scholar 

Blanchon S, Legendre M, Copin B, Duquesnoy P, Montantin G, Kott E, et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J Med Genet. 2012;49(6):410–6. https://doi.org/10.1136/jmedgenet-2012-100867.

Article  CAS  PubMed  Google Scholar 

Li Y, Wang WL, Tu CF, Meng LL, Hu TY, Du J, et al. A novel homozygous frameshift mutation in MNS1 associated with severe oligoasthenoteratozoospermia in humans. Asian J Androl. 2021;23(2):197–204. https://doi.org/10.4103/aja.aja_56_20.

Article  CAS  PubMed  Google Scholar 

Leslie JS, Rawlins LE, Chioza BA, Olubodun OR, Salter CG, Fasham J, et al. MNS1 variant associated with situs inversus and male infertility. Eur J Hum Genet. 2020;28(1):50–5. https://doi.org/10.1038/s41431-019-0489-z.

Article  CAS  PubMed  Google Scholar 

Ta-Shma A, Hjeij R, Perles Z, Dougherty GW, Abu Zahira I, Letteboer SJF, et al. Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility. PLoS Genet. 2018;14(8):e1007602. https://doi.org/10.1371/journal.pgen.1007602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuccarello D, Ferlin A, Cazzadore C, Pepe A, Garolla A, Moretti A, et al. Mutations in dynein genes in patients affected by isolated non-syndromic asthenozoospermia. Hum Reprod. 2008;23(8):1957–62. https://doi.org/10.1093/humrep/den193.

Article  CAS  PubMed  Google Scholar 

Zhu D, Zhang H, Wang R, Liu X, Jiang Y, Feng T, et al. Association of DNAH11 gene polymorphisms with asthenozoospermia in Northeast Chinese patients. Biosci Rep. 2019;39(6). 10.1042/BSR20181450.

Knowles MR, Leigh MW, Carson JL, Davis SD, Dell SD, Ferkol TW, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012;67(5):433–41. https://doi.org/10.1136/thoraxjnl-2011-200301.

Article  PubMed  Google Scholar 

Ostrowski LE, Andrews K, Potdar P, Matsuura H, Jetten A, Nettesheim P. Cloning and characterization of KPL2, a novel gene induced during ciliogenesis of tracheal epithelial cells. Am J Respir Cell Mol Biol. 1999;20(4):675–83. https://doi.org/10.1165/ajrcmb.20.4.3496.

Article  CAS  PubMed  Google Scholar 

Sironen A, Thomsen B, Andersson M, Ahola V, Vilkki J. An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig. Proc Natl Acad Sci U S A. 2006;103(13):5006–11. https://doi.org/10.1073/pnas.0506318103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sironen A, Hansen J, Thomsen B, Andersson M, Vilkki J, Toppari J, et al. Expression of SPEF2 during mouse spermatogenesis and identification of IFT20 as an interacting protein. Biol Reprod. 2010;82(3):580–90. https://doi.org/10.1095/biolreprod.108.074971.

Article  CAS  PubMed  Google Scholar 

Cindric S, Dougherty GW, Olbrich H, Hjeij R, Loges NT, Amirav I, et al. SPEF2- and HYDIN-mutant cilia lack the central pair-associated protein SPEF2, aiding primary ciliary dyskinesia diagnostics. Am J Respir Cell Mol Biol. 2020;62(3):382–96. https://doi.org/10.1165/rcmb.2019-0086OC.

Article  CAS  PubMed  Google Scholar 

Tu C, Nie H, Meng L, Wang W, Li H, Yuan S, et al. Novel mutations in SPEF2 causing different defects between flagella and cilia bridge: the phenotypic link between MMAF and PCD. Hum Genet. 2020;139(2):257–71. https://doi.org/10.1007/s00439-020-02110-0.

Article  CAS  PubMed  Google Scholar 

Liu C, Lv M, He X, Zhu Y, Amiri-Yekta A, Li W, et al. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J Med Genet. 2020;57(1):31–7. https://doi.org/10.1136/jmedgenet-2019-106011.

Article  CAS  PubMed  Google Scholar 

Sha Y, Liu W, Wei X, Zhu X, Luo X, Liang L, et al. Biallelic mutations in sperm flagellum 2 cause human multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. Clin Genet. 2019;96(5):385–93. https://doi.org/10.1111/cge.13602.

Article  CAS  PubMed  Google Scholar 

Guo F, Yang B, Ju ZH, Wang XG, Qi C, Zhang Y, et al. Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls. Reproduction. 2014;147(2):241–52. https://doi.org/10.1530/REP-13-0343.

Article  CAS  PubMed  Google Scholar 

Sironen A, Kotaja N, Mulhern H, Wyatt TA, Sisson JH, Pavlik JA, et al. Loss of SPEF2 function in mice results in spermatogenesis defects and primary ciliary dyskinesia. Biol Reprod. 2011;85(4):690–701. https://doi.org/10.1095/biolreprod.111.091132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mckenzie CW, Lee L. Genetic interaction between central pair apparatus genes CFAP221, CFAP54, and SPEF2 in mouse models of primary ciliary dyskinesia. Sci Rep. 2020;10(1):12337. https://doi.org/10.1038/s41598-020-69359-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Sha Y, Li Y, Mei L, Lin S, Huang X, et al. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet. 2019;56(10):678–84. https://doi.org/10.1136/jmedgenet-2018-105952.

Article  CAS  PubMed  Google Scholar 

Mori M, Kido T, Sakamoto N, Ozasa M, Kido K, Noguchi Y, et al. Novel SPEF2 variant in a Japanese patient with primary ciliary dyskinesia: a case report and literature review. J Clin Med. 2022;12(1). https://doi.org/10.3390/jcm12010317.

Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49(1). https://doi.org/10.1183/13993003.01090-2016.

Leigh MW, Hazucha MJ, Chawla KK, Baker BR, Shapiro AJ, Brown DE, et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann Am Thorac Soc. 2013;10(6):574–81. https://doi.org/10.1513/AnnalsATS.201305-110OC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A, et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet Med. 2019;21(5):1209–17. https://doi.org/10.1038/gim.2017.130.

Article  CAS  PubMed  Google Scholar 

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

Article  PubMed  PubMed Central  Google Scholar 

Gu YF, Zhou QW, Zhang SP, Lu CF, Gong F, Shi Y, et al. The clinical and neonatal outcomes after stimulation of immotile spermatozoa using SperMagic medium. Andrologia. 2018;50(7):e13056. https://doi.org/10.1111/and.13056.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif