Thymoquinone effects on autophagy, apoptosis, and oxidative stress in cisplatin-induced testicular damage in mice

Hussein YM, Mohamed RH, Shalaby SM, Abd El-Haleem MR, Abd El Motteleb DM. Anti-oxidative and anti-apoptotic roles of spermatogonial stem cells in reversing cisplatin-induced testicular toxicity. Cytotherapy. 2015; 17(11):1646–54. doi: https://doi.org/10.1016/j.jcyt.2015.07.001.

Aldemir M, Okulu EM, Kösemehmetoğlu KE, Ener K, Topal F, Evirgen O, et al. Evaluation of the protective effect of quercetin against cisplatin-induced renal and testis tissue damage and sperm parameters in rats. Andrologia. 2014;46(10):1089–97.

Article  CAS  PubMed  Google Scholar 

Aly HAA, Eid BG. Cisplatin induced testicular damage through mitochondria mediated apoptosis, inflammation and oxidative stress in rats: impact of resveratrol. Endocr J. 2020;67(9):969–80. https://doi.org/10.1507/endocrj.EJ20-0149.

Article  CAS  Google Scholar 

Nna VU, Ujah GA, Suleiman JB, Mohamed M, Nwokocha C, Akpan TJ, et al. Tert-butylhydroquinone preserve testicular steroidogenesis and spermatogenesis in cisplatin-intoxicated rats by targeting oxidative stress, inflammation and apoptosis. Toxicology. 2020;441:152528. https://doi.org/10.1016/j.tox.2020.152528.

Article  CAS  PubMed  Google Scholar 

Saher F, Ijaz MU, Hamza A, Ain QU, Hayat MF, Afsar T, et al. Mitigative potential of rhoifolin against cisplatin prompted testicular toxicity: biochemical, spermatogenic and histological based analysis. Toxicol Res (Camb). 2023;12(5):814–23. https://doi.org/10.1093/toxres/tfad073.

Article  PubMed  Google Scholar 

Demir M, Altındağ F. Sinapic acid ameliorates cisplatin-induced disruptions in testicular steroidogenesis and spermatogenesis by modulating androgen receptor, proliferating cell nuclear antigen and apoptosis in male rats. Andrologia. 2022;54(4):e14369. https://doi.org/10.1111/and.14369.

Article  CAS  PubMed  Google Scholar 

Datrianto DS, Budipitojo T, Prihatno SA. Secretome improves testosterone and androgen-binding protein production in testicular dysfunction rats induced by cisplatin. J Adv Vet Anim Res. 2021;8(4):687–94. https://doi.org/10.5455/javar.2021.h561.

Article  PubMed  PubMed Central  Google Scholar 

Soni KK, Kim HK, Choi BR, Karna KK, You JH, Cha JS, et al. Dose-dependent effects of cisplatin on the severity of testicular injury in Sprague Dawley rats: reactive oxygen species and endoplasmic reticulum stress. Drug Des Dev Ther. 2016;10:3959–68.

Article  CAS  Google Scholar 

Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. Oxidative stress-induced apoptosis and autophagy: balancing the contrary forces in spermatogenesis. Biochim Biophys Acta Mol Basis Dis. 2023;1869(6):166742. https://doi.org/10.1016/j.bbadis.2023.166742.

Article  CAS  PubMed  Google Scholar 

Wang M, Zeng L, Su P, Ma L, Zhang M, Zhang YZ. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update. 2022;28(2):200–31. https://doi.org/10.1093/humupd/dmab043.

Article  CAS  PubMed  Google Scholar 

Aparicio IM, Espino J, Bejarano I, Gallardo-Soler A, Campo ML, Salido GM, et al. Autophagy-related proteins are functionally active in human spermatozoa and may be involved in the regulation of cell survival and motility. Sci Rep. 2016;6:33647. https://doi.org/10.1038/srep33647.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang P, Ahmed N, Wang L, Chen H, Waqas Y, Liu T, et al. In vivo autophagy and biogenesis of autophagosomes within male haploid cells during spermiogenesis. Oncotarget. 2017;8(34):56791–801. https://doi.org/10.18632/oncotarget.18221.

Article  PubMed  PubMed Central  Google Scholar 

Shang Y, Wang H, Jia P, Zhao H, Liu C, et al. Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy. 2016;12:1575–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Wang Y, Luo J, Kang M, Hou J, Tang R, et al. Autophagy and apoptosis mediated nano-copper-induced testicular damage. Ecotoxicol Environ Saf. 2022;229:113039. https://doi.org/10.1016/j.ecoenv.2021.113039.

Article  CAS  PubMed  Google Scholar 

Ali W, Deng K, Sun J, Ma Y, Liu Z, Zou H. A new insight of cadmium-induced cellular evidence of autophagic-associated spermiophagy during spermatogenesis. Environ Sci Pollut Res Int. 2023;30(45):101064–74. https://doi.org/10.1007/s11356-023-29548-9.

Article  CAS  PubMed  Google Scholar 

Akarsu SA, Gür C, İleritürk M, Akaras N, Küçükler S, Kandemir FM. Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. J Trace Elem Med Biol. 2023;80:127315. https://doi.org/10.1016/j.jtemb.2023.127315.

Article  CAS  PubMed  Google Scholar 

Gan Y, Yang D, Yang S, Wang J, Wei J, Chen J. Di-2-ethylhexyl phthalate (DEHP) induces apoptosis and autophagy of mouse GC-1 spg cells. Environ Toxicol. 2020;35(2):292–9. https://doi.org/10.1002/tox.22866.

Article  CAS  PubMed  Google Scholar 

Wu S, Zhong G, Wan F, Jiang X, Tang Z, Hu T, et al. Evaluation of toxic effects induced by arsenic trioxide or/and antimony on autophagy and apoptosis in testis of adult mice. Environ Sci Pollut Res Int. 2021;28(39):54647–60. https://doi.org/10.1007/s11356-021-14486-1.

Article  CAS  PubMed  Google Scholar 

Huang W, Cao Z, Zhang J, Ji Q, Li Y. Aflatoxin B1 promotes autophagy associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis. Environ Poll. 2019;255(2):113317. https://doi.org/10.1016/j.envpol.2019.113317.

Article  CAS  Google Scholar 

Rotimi DE, Singh SK. Interaction between apoptosis and autophagy in testicular function. Andrologia. 2022;54(11):e14602. https://doi.org/10.1111/and.14602.

Article  PubMed  Google Scholar 

Vardiyan R, Ezati D, Anvari M, Ghasemi N, Talebi A. Effect of L-carnitine on the expression of the apoptotic genes Bcl-2 and Bax. Clin Exp Reprod Med. 2020;47(3):155–60. https://doi.org/10.5653/cerm.2019.03440.

Article  PubMed  PubMed Central  Google Scholar 

Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival. Biomol Concepts. 2016;7(4):259–70. https://doi.org/10.1515/bmc-2016-0015.

Article  CAS  PubMed  Google Scholar 

Shahedi A, Talebi AR, Mirjalili A, Pourentezari M. Protective effects of curcumin on chromatin quality, sperm parameters, and apoptosis following testicular torsion-detorsion in mice. Clin Exp Reprod Med. 2021;48(1):27–33. https://doi.org/10.5653/cerm.2020.03853.

Article  PubMed  PubMed Central  Google Scholar 

Behairy A, Hashem MM, Abo-El-Sooud K, El-Metwally AE, Hassan BA, Abd-Elhakim YM. Quercetin abates aluminum trioxide nanoparticles and lead acetate induced altered sperm quality, testicular oxidative damage, and sexual hormones disruption in male rats. Antioxidants (Basel). 2022;11(11):2133. https://doi.org/10.3390/antiox11112133.

Article  CAS  PubMed  Google Scholar 

Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: a mini review. J Integr Med. 2023;21(2):130–5. https://doi.org/10.1016/j.joim.2023.01.004.

Article  PubMed  Google Scholar 

YaghutianNezhad L, MohseniKouchesfahani H, Alaee S, Bakhtari A. Thymoquinone ameliorates bleomycin-induced reproductive toxicity in male Balb/c mice. Hum Exp Toxicol. 2021;40(12):S611–21. https://doi.org/10.1177/09603271211048184.

Article  CAS  Google Scholar 

Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res. 2017;11(5):IE01–5. https://doi.org/10.7860/JCDR/2017/23927.9886.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mesbahzadeh B, Hassanzadeh-Taheri M, Aliparast MS, Baniasadi P, Mehran HM. The protective effect of crocin on cisplatin-induced testicular impairment in rats. BMC Urol. 2021;21(1):117. https://doi.org/10.1186/s12894-021-00889-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng W, Li C, Zhan Y, Zhang R, Zheng J. Thymoquinone alleviates liver fibrosis via miR-30a-mediated epithelial-mesenchymal transition. J Cell Physiol. 2020. https://doi.org/10.1002/jcp.30097.

Article  PubMed  Google Scholar 

Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. Protective effects of black cumin (Nigella sativa) and its bioactive constituent, thymoquinone against kidney injury: an aspect on pharmacological insights. Int J Mol Sci. 2021;22(16):9078.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother. 2021;138:111492. https://doi.org/10.1016/j.biopha.2021.111492.

Article  CAS  PubMed  Google Scholar 

Algaidi SA, Faddladdeen KA, Alrefaei GI, Qahl SH, Albadawi EA, ALmohaimeed HM, et al. Thymoquinone protects the testes of hypothyroid rats by suppressing pro-inflammatory cytokines and oxidative stress and promoting SIRT1 testicular expression. Front Pharmacol. 2022;13:1040857. https://doi.org/10.3389/fphar.2022.1040857.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gur FM, Timurkaan S, Taskin E, Guven C, Gur HE, Senturk M. Thymoquinone improves testicular damage and sperm quality in experimentally varicocele-induced adolescent rats. Andrologia. 2021;53:(5):e14033. https://doi.org/10.1111/and.14033.

Savran M, Ascı H, Armagan I, Erzurumlu Y, Azırak S, Ozer MK, et al. Thymoquinone could be protective against valproic acid-induced testicular toxicity by antioxidant and anti-inflammatory mechanisms. Andrologia. 2020;52:(7):e13623. https://doi.org/10.1111/and.13623.

Sheikhbahaei F, Khazaei M, Rabzia A, Mansouri K, Ghanbari A. Protective effects of thymoquinone against methotrexate-induced germ cell apoptosis in male mice. Int J Fertil Steril. 2016;9(4):541–7.

CAS  PubMed

留言 (0)

沒有登入
gif