Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos

Plaza Reyes A. and Lanner F., Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos, Development (Cambridge, England), 2017, https://doi.org/10.1242/dev.139683.

Gaj T, Gersbach CA, Barbas CF, 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013.https://doi.org/10.1016/j.tibtech.2013.04.004

Sansbury BM, Hewes AM, Kmiec EB. Understanding the diversity of genetic outcomes from CRISPR-Cas generated homology-directed repair. Commun Biol. 2019. https://doi.org/10.1038/s42003-019-0705-y.

Article  PubMed  PubMed Central  Google Scholar 

Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017. https://doi.org/10.1146/annurev-biophys-062215-010822.

Article  PubMed  Google Scholar 

Tang L, et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics : MGG. 2017. https://doi.org/10.1007/s00438-017-1299-z.

Article  PubMed  Google Scholar 

Liang D, et al. Limitations of gene editing assessments in human preimplantation embryos. Nat Commun. 2023. https://doi.org/10.1038/s41467-023-36820-6.

Article  PubMed  PubMed Central  Google Scholar 

Zuccaro MV, et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell. 2020. https://doi.org/10.1016/j.cell.2020.10.025.

Article  PubMed  Google Scholar 

Ma H, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017. https://doi.org/10.1038/nature23305.

Article  PubMed  PubMed Central  Google Scholar 

Bekaert B, et al. Retained chromosomal integrity following CRISPR-Cas9-based mutational correction in human embryos. Mol Ther : J Am Soc Gene Ther. 2023. https://doi.org/10.1016/j.ymthe.2023.06.013.

Article  Google Scholar 

Wu Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013. https://doi.org/10.1016/j.stem.2013.10.016.

Article  PubMed  PubMed Central  Google Scholar 

Mianne J, et al. Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome medicine. 2016. https://doi.org/10.1186/s13073-016-0273-4.

Article  PubMed  PubMed Central  Google Scholar 

Huai C, et al. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Hum Genet. 2017. https://doi.org/10.1007/s00439-017-1801-z.

Article  PubMed  Google Scholar 

Wu WH, et al. CRISPR repair reveals causative mutation in a preclinical model of retinitis pigmentosa. Mol Ther : J Am Soc Gene Ther. 2016. https://doi.org/10.1038/mt.2016.107.

Article  Google Scholar 

Long C., McAnally J. R., Shelton J. M., Mireault A. A., Bassel-Duby R., and Olson E. N., Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA, Science (New York, N.Y.), 2014, https://doi.org/10.1126/science.1254445.

Parikh BA, Beckman DL, Patel SJ, White JM, Yokoyama WM. Detailed phenotypic and molecular analyses of genetically modified mice generated by CRISPR-Cas9-mediated editing. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0116484.

Article  PubMed  PubMed Central  Google Scholar 

Miao K, et al. Optimizing CRISPR/Cas9 technology for precise correction of the Fgfr3-G374R mutation in achondroplasia in mice. J Biol Chem. 2019. https://doi.org/10.1074/jbc.RA118.006496.

Article  PubMed  PubMed Central  Google Scholar 

Gu B, Posfai E, Rossant J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4166.

Article  PubMed  Google Scholar 

Stamatiadis P. et al. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences. Human Reprod(Oxford, England). 2021 https://doi.org/10.1093/humrep/deab027.

Wilde JJ, et al. Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair. Cell. 2021. https://doi.org/10.1016/j.cell.2021.04.035.

Article  PubMed  PubMed Central  Google Scholar 

Bischoff N, Wimberger S, Maresca M, Brakebusch C. Improving precise CRISPR genome editing by small molecules: is there a magic potion? Cells. 2020. https://doi.org/10.3390/cells9051318.

Article  PubMed  PubMed Central  Google Scholar 

Ma H. et al., Ma et al. reply, Nature, 2018, https://doi.org/10.1038/s41586-018-0381-y.

Alanis-Lobato G, et al. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proc Natl Acad Sci USA. 2021. https://doi.org/10.1073/pnas.2004832117.

Article  PubMed  PubMed Central  Google Scholar 

Adikusuma F, et al. Large deletions induced by Cas9 cleavage. Nature. 2018. https://doi.org/10.1038/s41586-018-0380-z.

Article  PubMed  Google Scholar 

Papathanasiou S, et al. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-26097-y.

Article  PubMed  PubMed Central  Google Scholar 

Yeste M, Jones C, Amdani SN, Patel S, Coward K. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update. 2016. https://doi.org/10.1093/humupd/dmv040.

Article  PubMed  Google Scholar 

Cardona Barberan A., Boel A., Vanden Meerschaut F., Stoop D., and Heindryckx B., Fertilization failure after human ICSI and the clinical potential of PLCZ1, Reproduction (Cambridge, England), 2022, https://doi.org/10.1530/REP-21-0387.

Saunders C. M. et al., PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development, Development (Cambridge, England), 2002, https://doi.org/10.1242/dev.129.15.3533.

Yoon SY, et al. Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development. J Clin Investig. 2008. https://doi.org/10.1172/JCI36942.

Article  PubMed  PubMed Central  Google Scholar 

Kashir J, Heindryckx B, Jones C, De Sutter P, Parrington J, Coward K. Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update. 2010. https://doi.org/10.1093/humupd/dmq018.

Article  PubMed  Google Scholar 

Ferrer-Vaquer A, Barragan M, Freour T, Vernaeve V, Vassena R. PLCzeta sequence, protein levels, and distribution in human sperm do not correlate with semen characteristics and fertilization rates after ICSI. J Assist Reprod Genet. 2016. https://doi.org/10.1007/s10815-016-0718-0.

Article  PubMed  PubMed Central  Google Scholar 

Heindryckx B., Van der Elst J., De Sutter P., and Dhont M., Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI, Human reproduction (Oxford, England), 2005, https://doi.org/10.1093/humrep/dei029.

Ferrer-Buitrago M, et al. Comparative study of preimplantation development following distinct assisted oocyte activation protocols in a PLC-zeta knockout mouse model. Mol Hum Reprod. 2020. https://doi.org/10.1093/molehr/gaaa060.

Article  PubMed  Google Scholar 

Bonte D, et al. Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: a 17-year retrospective study. Fertil Steril. 2019. https://doi.org/10.1016/j.fertnstert.2019.04.006.

Article  PubMed  Google Scholar 

Hachem A. et al., PLCzeta is the physiological trigger of the Ca(2+) oscillations that induce embryogenesis in mammals but conception can occur in its absence, Development (Cambridge, England), 2017, https://doi.org/10.1242/dev.150227.

Fogarty NME, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature. 2017. https://doi.org/10.1038/nature24033.

Article  PubMed  PubMed Central  Google Scholar 

Peng C, et al. Accurate detection and evaluation of the gene-editing frequency in plants using droplet digital PCR. Front Plant Sci. 2020. https://doi.org/10.3389/fpls.2020.610790.

Article  PubMed  PubMed Central  Google Scholar 

De Leeneer K, et al. Flexible, scalable, and efficient targeted resequencing on a benchtop sequencer for variant detection in clinical practice. Hum Mutat. 2015. https://doi.org/10.1002/humu.22739.

Article  PubMed  Google Scholar 

Almeida JL, et al. Interlaboratory study to validate a STR profiling method for intraspecies identification of mouse cell lines. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0218412.

Article  PubMed  PubMed Central  Google Scholar 

Almeida JL, Hill CR, Cole KD. Mouse cell line authentication. Cytotechnology. 2014. https://doi.org/10.1007/s10616-013-9545-7.

Article  PubMed  Google Scholar 

Deleye L, et al. Shallow whole genome sequencing is well suited for the detection of chromosomal aberrations in human blastocysts. Fertil Steril. 2015. https://doi.org/10.1016/j.fertnstert.2015.07.1144.

Article  PubMed  Google Scholar 

Sante T, et al. ViVar: a comprehensive platform for the analysis and visualization of structural genomic variation. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0113800.

Article  PubMed  PubMed Central  Google Scholar 

Bekaert B, Boel A, Cosemans G, De Witte L, Menten B, Heindryckx B. CRISPR/Cas gene editing in the human germline. Semin Cell Dev Biol. 2022. https://doi.org/10.1016/j.semcdb.2022.03.012.

Article  PubMed  Google Scholar 

Jayavaradhan R, et al. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-10735-7.

Article  PubMed  PubMed Central  Google Scholar 

Nambiar TS, et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-11105-z.

留言 (0)

沒有登入
gif