Phagocytosis model of calcium oxalate monohydrate crystals generated using human induced pluripotent stem cell-derived macrophages

Lang J, Narendrula A, El-Zawahry A, Sindhwani P, Ekwenna O (2022) Global trends in incidence and burden of urolithiasis from 1990 to 2019: an analysis of global burden of disease study data. Eur Urol Open Sci 35:37–46. https://doi.org/10.1016/j.euros.2021.10.008

Article  PubMed  PubMed Central  Google Scholar 

Howles SA, Thakker RV (2020) Genetics of kidney stone disease. Nat Rev Urol 17:407–421. https://doi.org/10.1038/s41585-020-0332-x

Article  PubMed  Google Scholar 

Zisman AL (2017) Effectiveness of treatment modalities on kidney stone recurrence. Clin J Am Soc Nephrol 12:1699–1708. https://doi.org/10.2215/CJN.11201016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okada A, Nomura S, Higashibata Y et al (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 35:89–99. https://doi.org/10.1007/s00240-007-0082-8

Article  CAS  PubMed  Google Scholar 

Okada A, Yasui T, Hamamoto S et al (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924. https://doi.org/10.1359/jbmr.081245

Article  CAS  PubMed  Google Scholar 

Okada A, Yasui T, Fujii Y et al (2011) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res:2701–2711. https://doi.org/10.1002/jbmr.158. Erratum in: J Bone Miner Res (2011) 26:439. https://doi.org/10.1002/jbmr.334

Taguchi K, Okada A, Kitamura H et al (2014) Colony-stimulating factor-1 signaling suppresses renal crystal formation. J Am Soc Nephrol 25:1680–1697. https://doi.org/10.1681/ASN.2013060675

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okada A, Hamamoto S, Taguchi K et al (2018) Kidney stone formers have more renal parenchymal crystals than non-stone formers, particularly in the papilla region. BMC Urol 18:19. https://doi.org/10.1186/s12894-018-0331-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taguchi K, Hamamoto S, Okada A et al (2017) Genome-wide gene expression profiling of randall’s plaques in calcium oxalate stone formers. J Am Soc Nephrol 28:333–347. https://doi.org/10.1681/ASN.2015111271

Article  CAS  PubMed  Google Scholar 

Okada A, Ando R, Taguchi K et al (2019) Identification of new urinary risk markers for urinary stones using a logistic model and multinomial logit model. Clin Exp Nephrol 23:710–716. https://doi.org/10.1007/s10157-019-01693-x

Article  CAS  PubMed  Google Scholar 

Elitt MS, Barbar L, Tesar PJ (2018) Drug screening for human genetic diseases using iPSC models. Hum Mol Genet 27:R89–98. https://doi.org/10.1093/hmg/ddy186

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutbier S, Wanke F, Dahm N et al (2020) Large-scale production of human iPSC-derived macrophages for drug screening. Int J Mol Sci 21:4808. https://doi.org/10.3390/ijms21134808

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

Article  CAS  PubMed  Google Scholar 

Yanagimachi MD, Niwa A, Tanaka T et al (2013) Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLOS ONE 8:e59243. https://doi.org/10.1371/journal.pone.0059243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo L, Tozawa K, Okada A et al (2014) A paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment. J Urol 191:1906–1912. https://doi.org/10.1016/j.juro.2014.01.013

Article  CAS  PubMed  Google Scholar 

Chaiyarit S, Mungdee S, Thongboonkerd V (2010) Nonradioactive labelling of calcium oxalate crystals for investigations of crystal-cell interaction and internalization. Anal Methods 2:1536–1541. https://doi.org/10.1039/C0AY00321B

Article  CAS  Google Scholar 

Okada A, Aoki H, Onozato D et al (2019) Active phagocytosis and diachronic processing of calcium oxalate monohydrate crystals in an in vitro macrophage model. Kidney Blood Press Res 44:1014–1025. https://doi.org/10.1159/000501965

Article  CAS  PubMed  Google Scholar 

Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J, Khan SR (2016) Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol 195:1143–1151. https://doi.org/10.1016/j.juro.2015.11.048

Article  CAS  PubMed  Google Scholar 

Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318. https://doi.org/10.1038/sj.ki.5000238

Article  CAS  PubMed  Google Scholar 

Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17:417–433. https://doi.org/10.1038/s41581-020-00392-1

Article  CAS  PubMed  Google Scholar 

Taguchi K, Okada A, Unno R, Hamamoto S, Yasui T (2021) Macrophage function in calcium oxalate kidney stone formation: a systematic review of literature. Front Immunol 12:673690. https://doi.org/10.3389/fimmu.2021.673690

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aboul-Soud MAM, Alzahrani AJ, Mahmoud A (2021) Induced pluripotent stem cells (iPSCs)-roles in regenerative therapies, disease modelling and drug screening. Cells 10:2319. https://doi.org/10.3390/cells10092319

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ingersoll MA, Spanbroek R, Lottaz C et al (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood;115(3):e10–19. https://doi.org/10.1182/blood-2009-07-235028. Erratum in: Blood (2010) 116:857. https://doi.org/10.1182/blood-2010-06-290122

Nielsen MC, Andersen MN, Møller HJ (2020) Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology 159:63–74. https://doi.org/10.1111/imm.13125

Article  CAS  PubMed  Google Scholar 

Mukherjee C, Hale C, Mukhopadhyay S (2018) A simple multistep protocol for differentiating human induced pluripotent stem cells into functional macrophages. Methods Mol Biol 1784:13–28. https://doi.org/10.1007/978-1-4939-7837-3_2

Article  CAS  PubMed  Google Scholar 

Shi J, Xue C, Liu W, Zhang H (2019) Differentiation of human-induced pluripotent stem cells to macrophages for disease modeling and functional genomics. Curr Protoc Stem Cell Biol 48:e74. https://doi.org/10.1002/cpsc.74

Article  CAS  PubMed  Google Scholar 

Sun XY, Zhang CY, Bhadja P (2017) Preparation, properties, formation mechanisms, and cytotoxicity of calcium oxalate monohydrate with various morphologies. CrystEngComm 20:75–87. https://doi.org/10.1039/C7CE01912B

Article  Google Scholar 

留言 (0)

沒有登入
gif