Echocardiographic estimation of right ventricular diastolic stiffness based on pulmonary regurgitant velocity waveform analysis in precapillary pulmonary hypertension

Kwan ED, Vélez-Rendón D, Zhang X et al (2021) Distinct time courses and mechanics of right ventricular hypertrophy and diastolic stiffening in a male rat model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 321:702–715. https://doi.org/10.1152/ajpheart.00046.2021

Article  CAS  Google Scholar 

Rain S, Handoko ML, Trip P et al (2013) Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128:2016–2025. https://doi.org/10.1161/CIRCULATIONAHA.113.001873

Article  CAS  PubMed  Google Scholar 

Vanderpool RR, Pinsky MR, Naeije R et al (2015) RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart 101:37–43. https://doi.org/10.1136/heartjnl-2014-306142

Article  PubMed  Google Scholar 

Trip P, Rain S, Handoko ML et al (2015) Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J 45:1603–1612. https://doi.org/10.1183/09031936.00156714

Article  PubMed  Google Scholar 

Nakaya T, Ohira H, Sato T et al (2020) Right ventriculo-pulmonary arterial uncoupling and poor outcomes in pulmonary arterial hypertension. Pulm Circ 10:2045894020957223. https://doi.org/10.1177/2045894020957223

Article  PubMed  PubMed Central  Google Scholar 

Brener MI, Masoumi A, Ng VG et al (2022) Invasive right ventricular pressure-volume analysis: basic principles, clinical applications, and practical recommendations. Circ Heart Fail 15:e009101. https://doi.org/10.1161/CIRCHEARTFAILURE.121.009101

Article  PubMed  Google Scholar 

Gaasch WH, Bing OH, Mirsky I (1982) Chamber compliance and myocardial stiffness in left ventricular hypertrophy. Eur Heart J 3 Suppl A 139–145. https://doi.org/10.1093/eurheartj/3.suppl_a.139

Otsuji Y, Kisanuki A, Toyonaga K et al (1996) Right ventricular stiffness measured by a new method without volume estimation in coronary artery disease. Am J Cardiol 78:298–303. https://doi.org/10.1016/s0002-9149(96)00281-0

Article  CAS  PubMed  Google Scholar 

Okada K, Kaga S, Abiko R et al (2018) Novel echocardiographic method to assess left ventricular chamber stiffness and elevated end-diastolic pressure based on time-velocity integral measurements of pulmonary venous and transmitral flows. Eur Heart J Cardiovasc Imaging 19:1260–1267. https://doi.org/10.1093/ehjci/jex305

Article  PubMed  Google Scholar 

Murayama M, Okada K, Kaga S et al (2019) Simple and noninvasive method to estimate right ventricular operating stiffness based on echocardiographic pulmonary regurgitant velocity and tricuspid annular plane movement measurements during atrial contraction. Int J Cardiovasc Imaging 35:1871–1880. https://doi.org/10.1007/s10554-019-01637-2

Article  PubMed  Google Scholar 

Fujisawa R, Okada K, Kaga S et al (2022) Prognostic value of an echocardiographic index reflecting right ventricular operating stiffness in patients with heart failure. Heart Vessels 37:583–592. https://doi.org/10.1007/s00380-021-01960-6

Article  PubMed  Google Scholar 

Shima H, Nakaya T, Tsujino I et al (2022) Accuracy of SwanGanz catheterization-based assessment of right ventricular function: validation study using high-fidelity micromanometry-derived values as reference. Pulm Circ 12:e12078. https://doi.org/10.1002/pul2.12078

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiss JL, Frederiksen JW, Weisfeldt ML (1976) Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58:751–760. https://doi.org/10.1172/JCI108522

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson CJ, Bonow RO (2012) Braunwald’s heart disease: a textbook of cardiovascular medicine, 9th edn. Elsevier, Philadelphia, pp 364–391

Google Scholar 

Borlaug BA, Reddy YNV (2019) The role of the pericardium in heart failure: implications for pathophysiology and treatment. JACC Heart Fail 7. https://doi.org/10.1016/j.jchf.2019.03.021. :574 – 85

Clarke CJ, Gurka MJ, Norton PT, Kramer CM, Hoyer AW (2012) Assessment of the accuracy and reproducibility of RV volume measurements by CMR in congenital heart disease. JACC Cardiovasc Imaging 5:28–37. https://doi.org/10.1016/j.jcmg.2011.05.007

Article  PubMed  Google Scholar 

Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B et al (2021) Reference ranges (normal values) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson 14:22–87. https://doi.org/10.1186/s12968-020-00683-3

Article  Google Scholar 

Tello K, Richter MJ, Axmann J et al (2018) More on single-beat estimation of right Ventriculoarterial Coupling in Pulmonary arterial hypertension. Am J Respir Crit Care Med 198:816–818. https://doi.org/10.1164/rccm.201802-0283LE

Article  PubMed  Google Scholar 

Naeije R, Richter MJ, Rubin LJ (2022) The physiological basis of pulmonary arterial hypertension. Eur Respir J. https://doi.org/10.1183/13993003.02334-2021. 59:+2102334

Article  PubMed  PubMed Central  Google Scholar 

Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713. https://doi.org/10.1016/j.echo.2010.05.010

Article  PubMed  Google Scholar 

Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39e14. https://doi.org/10.1016/j.echo.2014.10.003

Article  PubMed  Google Scholar 

Zoghbi WA, Adams D, Bonow RO et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 30:303–371. https://doi.org/10.1016/j.echo.2017.01.007

Article  PubMed  Google Scholar 

Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107:526–531. https://doi.org/10.1016/0002-8703(84)90095-4

Article  CAS  PubMed  Google Scholar 

Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF (1985) An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol 5:918–927. https://doi.org/10.1016/s0735-1097(85)80433-2

Article  CAS  PubMed  Google Scholar 

Chiba Y, Iwano H, Tsuneta S et al (2022) Determinants of altered left ventricular suction in pre-capillary pulmonary hypertension. Eur Heart J Cardiovasc Imaging 23:1399–1406. https://doi.org/10.1093/ehjci/jeab285

Article  PubMed  Google Scholar 

Kaga S, Mikami T, Takamatsu Y et al (2014) Quantitative and pattern analyses of continuous-wave doppler-derived pulmonary regurgitant flow velocity for the diagnosis of constrictive pericarditis. J Am Soc Echocardiogr 27:1223–1229. https://doi.org/10.1016/j.echo.2014.07.002

Article  PubMed  Google Scholar 

Kaga S, Mikami T, Murayama M et al (2017) A new method to estimate pulmonary vascular resistance using diastolic pulmonary artery-right ventricular pressure gradients derived from continuous-wave doppler velocity measurements of pulmonary regurgitation. Int J Cardiovasc Imaging 33:31–38. https://doi.org/10.1007/s10554-016-0965-2

Article  PubMed  Google Scholar 

Murayama M, Mikami T, Kaga S et al (2017) Usefulness of the continuous-wave doppler-derived pulmonary arterial-right ventricular pressure gradient just before atrial contraction for the estimation of pulmonary arterial diastolic and wedge pressures. Ultrasound Med Biol 43:958–966. https://doi.org/10.1016/j.ultrasmedbio.2017.01.006

Article  PubMed  Google Scholar 

Mohammed SF, Hussain I, AbouEzzeddine OF et al (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320. https://doi.org/10.1161/CIRCULATIONAHA.113.008461

Article  PubMed  PubMed Central  Google Scholar 

Humbert M, Kovacs G, Hoeper MM et al (2022) 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 43:3618–3631. https://doi.org/10.1093/eurheartj/ehac237

Article  CAS  PubMed  Google Scholar 

Naeije R, Badagliacca R (2017) The overloaded right heart and ventricular interdependence. Cardiovasc Res 113:1474–1485. https://doi.org/10.1093/cvr/cvx160

Article  CAS  PubMed  Google Scholar 

Belenkie I, Sas R, Mitchell J, Smith ER, Tyberg JV (2004) Opening the pericardium during pulmonary artery constriction improves cardiac function. J Appl Physiol (1985) 96:917–922. https://doi.org/10.1152/japplphysiol.00722.2003

Article  PubMed  Google Scholar 

Grossman W, Stefadouros MA, McLaurin LP, Rolett EL, Young DT (1973) Quantitative assessment of left ventricular diastolic stiffness in man. Circulation 47:567–574. https://doi.org/10.1161/01.cir.47.3.567

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif