Comparison study between two different precursors of RGO/AuNPs one pot synthesis

One pot synthesis of graphene nanocomposites is low-cost and time-efficient methodology to be considered for large scale device fabrication. Graphene precursors made of renewable and waste materials such as rice husk, oil palm kernel and sugar are explored upon rising concern of expensiveness and hazard in conventional approaches. This paper presents chemical characterisation study of one pot reduced graphene oxide/gold nanoparticles (RGO/AuNPs) synthesised from low-cost sucrose as precursor and dehydroascorbic acid as green reducing agent at ambient condition which was originally used by Hurtado et al in 2020. Raman spectrum of RGO/AuNPs was compared to composite of commercial GO precursor to evaluate quality of reduction products. Result from UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) showed that both techniques successfully eliminated oxygen-containing functional groups to form graphene constitution. Asides from lower stability, AuNPs in sucrose-derived RGO possessed larger size and was more dispersed than those of GO-derived RGO, implying the need to optimise the current recipe. Reduction mechanism of both precursors was proposed for better understanding. The aim of this work is to show feasibility of green graphene nanocomposite synthesis that could empower productivity of electronic, optical and optoelectronics applications.

留言 (0)

沒有登入
gif