Bone mineral density in adults growth hormone deficiency with different ages of onset: a real-world retrospective study

S. Melmed, Pathogenesis and diagnosis of growth hormone deficiency in adults. N. Engl. J. Med. 380(26), 2551–2562 (2019)

CAS  PubMed  Google Scholar 

N.A. Tritos, B.M.K. Biller, Current concepts of the diagnosis of adult growth hormone deficiency. Rev. Endocr. Metab. Disord. 22(1), 109–116 (2021)

CAS  PubMed  Google Scholar 

C.C. van Bunderen, D.S. Olsson, Growth hormone deficiency and replacement therapy in adults: impact on survival. Rev. Endocr. Metab. Disord. 22(1), 125–133 (2021)

PubMed  Google Scholar 

M.E. Molitch, D.R. Clemmons, S. Malozowski, G.R. Merriam, M. Lee Vance; Endocrine Society, Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96(6), 1587–1609 (2011)

CAS  PubMed  Google Scholar 

N.A. Tritos, B.M.K. Biller, Growth hormone and bone. Curr. Opin. Endocrinol. Diabetes Obes. 16(6), 415–422 (2009)

CAS  PubMed  Google Scholar 

P.S. Dixit M, S. Yakar, Effects of GH/IGF axis on bone and cartilage. Mol. Cell Endocrinol. 519, 111052 (2021)

PubMed  Google Scholar 

H.L. Racine, M.A. Serrat, The actions of IGF-1 in the growth plate and its role in postnatal bone elongation. Curr. Osteoporos. Rep. 18(3), 210–227 (2020)

PubMed  PubMed Central  Google Scholar 

S.J. Holmes, S.M. Shalet, Role of growth hormone and sex steroids in achieving and maintaining normal bone mass. Horm. Res. 45(1–2), 86–93 (1996)

CAS  PubMed  Google Scholar 

J.S. Walsh, Y. Henry, D. Fatayerji, R. Eastell, Hormonal determinants of bone turnover before and after attainment of peak bone mass. Clin. Endocrinol. 72(3), 320–327 (2010)

CAS  Google Scholar 

Q. Wang, E. Seeman, Skeletal growth and peak bone strength. Best Pract. Res. Clin. Endocrinol. Metab. 22(5), 687–700 (2008)

PubMed  Google Scholar 

S. Zhang, Y. Cui, X. Ma, J. Yong, L. Yan, M. Yang, J. Ren, F. Tang, L. Wen, J. Qiao, Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat. Commun. 11(1), 5275 (2020)

CAS  PubMed  PubMed Central  Google Scholar 

M. Gangat, S. Radovick, Pitutary hypoplasia. Endocrinol. Metab. Clin. N. Am. 46(2), 247–257 (2017)

Google Scholar 

J.J. Díez, S. Sangiao-Alvarellos, F. Cordido, Treatment with growth hormone for adults with growth hormone deficiency syndrome: benefits and risks. Int J. Mol. Sci. 19(3), 893 (2018)

PubMed  PubMed Central  Google Scholar 

H. Yang, K. Yan, X. Yuping, Q. Zhang, L. Wang, F. Gong, H. Zhu, W. Xia, H. Pan, Bone microarchitecture and volumetric bone density impairment in young male adults with childhood-onset growth hormone deficiency. Eur. J. Endocrinol. 180(2), 145–153 (2019)

PubMed  Google Scholar 

S. Liu et al. Reduced bone mineral density in middle-aged male patients with adult growth hormone deficiency. Horm. Metab. Res. 54(7), 450–457 (2022)

CAS  PubMed  Google Scholar 

H. Zhu, Y. Xu, F. Gong, G. Shan, H. Yang, K. Xu, D. Zhang, X. Cheng, Z. Zhang, S. Chen, L. Wang, H. Pan, Reference ranges for serum insulin-like growth factor I (IGF-I) in healthy Chinese adults. PLoS ONE 12(10), e0185561 (2017)

PubMed  PubMed Central  Google Scholar 

H. Li, C.-Y. Ji, X.-N. Zong, Y.-Q. Zhang, Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi 47(7), 487–492 (2009)

PubMed  Google Scholar 

A. Giustina, G. Mazziotti, E. Canalis, Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29(5), 535–559 (2008)

CAS  PubMed  PubMed Central  Google Scholar 

S. Yakar, H. Werner, C.J. Rosen, Insulin-like growth factors: actions on the skeleton. J. Mol. Endocrinol. 61(1), T115–T137 (2018)

CAS  PubMed  PubMed Central  Google Scholar 

J. Banu, L. Wang, D.N. Kalu, Effects of increased muscle mass on bone in male mice overexpressing IGF-I in skeletal muscles. Calcif. Tissue Int. 73(2), 196–201 (2003)

CAS  PubMed  Google Scholar 

L. Xu et al. Concerted actions of insulin-like growth factor 1, testosterone, and estradiol on peripubertal bone growth: a 7-year longitudinal study. J. Bone Min. Res. 26(9), 2204–2211 (2011)

CAS  Google Scholar 

M.E. Breen et al. 25-hydroxyvitamin D, insulin-like growth factor-I, and bone mineral accrual during growth. J. Clin. Endocrinol. Metab. 96(1), E89–E98 (2011)

CAS  PubMed  Google Scholar 

R. Bouillon et al. Bone status and fracture prevalence in Russian adults with childhood-onset growth hormone deficiency. J. Clin. Endocrinol. Metab. 89(10), 4993–4998 (2004)

CAS  PubMed  Google Scholar 

T. Rosén, T. Hansson, H. Granhed, J. Szucs, B.A. Bengtsson, Reduced bone mineral content in adult patients with growth hormone deficiency. Acta Endocrinol. 129(3), 201–206 (1993)

Google Scholar 

P.V. Carroll et al. Growth hormone deficiency in adulthood and the effects of growth hormone replacement: a review. Growth Hormone Research Society Scientific Committee. J. Clin. Endocrinol. Metab. 83(2), 382–395 (1998)

CAS  PubMed  Google Scholar 

J.M. Kaufman, P. Taelman, A. Vermeulen, M. Vandeweghe, Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J. Clin. Endocrinol. Metab. 74(1), 118–123 (1992)

CAS  PubMed  Google Scholar 

S. Cvijetić, M. Korsić, Apparent bone mineral density estimated from DXA in healthy men and women. Osteoporos. Int. 15(4), 295–300 (2004)

PubMed  Google Scholar 

N.M. Appelman-Dijkstra et al. Effects of up to 15 years of recombinant human GH (rhGH) replacement on bone metabolism in adults with growth hormone deficiency (GHD): the Leiden Cohort Study. Clin. Endocrinol. 81(5), 727–735 (2014)

CAS  Google Scholar 

N.M. Appelman-Dijkstra et al. Long-term effects of recombinant human GH replacement in adults with GH deficiency: a systematic review. Eur. J. Endocrinol. 169(1), R1–R14 (2013)

CAS  PubMed  Google Scholar 

W.M. Drake et al. The influence of gender on the short and long-term effects of growth hormone replacement on bone metabolism and bone mineral density in hypopituitary adults: a 5-year study. Clin. Endocrinol. 54(4), 525–532 (2001)

CAS  Google Scholar 

G. Götherström et al. Ten-year GH replacement increases bone mineral density in hypopituitary patients with adult onset GH deficiency. Eur. J. Endocrinol. 156(1), 55–64 (2007)

PubMed  Google Scholar 

M. Elbornsson et al. Fifteen years of GH replacement increases bone mineral density in hypopituitary patients with adult-onset GH deficiency. Eur. J. Endocrinol. 166(5), 787–795 (2012)

CAS  PubMed  PubMed Central  Google Scholar 

A.P. Delitala, A. Scuteri, C. Doria, Thyroid hormone diseases and osteoporosis. J. Clin. Med. 9(4), 1034 (2020)

CAS  PubMed  PubMed Central  Google Scholar 

D. Tuchendler, M. Bolanowski, The influence of thyroid dysfunction on bone metabolism. Thyroid Res. 7(1), 12 (2014)

PubMed  PubMed Central  Google Scholar 

V. Birzniece, K.K.Y. Ho, Sex steroids and the GH axis: implications for the management of hypopituitarism. Best Pract. Res. Clin. Endocrinol. Metab. 31(1), 59–69 (2017)

CAS  PubMed  Google Scholar 

J. Gibney et al. Growth hormone and testosterone interact positively to enhance protein and energy metabolism in hypopituitary men. Am. J. Physiol. Endocrinol. Metab. 289(2), E266–E271 (2005)

CAS  PubMed  Google Scholar 

G. Götherström et al. A prospective study of 5 years of GH replacement therapy in GH-deficient adults: sustained effects on body composition, bone mass, and metabolic indices. J. Clin. Endocrinol. Metab. 86(10), 4657–4665 (2001)

PubMed  Google Scholar 

A. Rossini et al. Bone and body composition analyses by DXA in adults with GH deficiency: effects of long-term replacement therapy. Endocrine 74(3), 666–675 (2021)

CAS  PubMed  Google Scholar 

P. Kendall-Taylor et al. The clinical, metabolic and endocrine features and the quality of life in adults with childhood-onset craniopharyngioma compared with adult-onset craniopharyngioma. Eur. J. Endocrinol. 152(4), 557–567 (2005)

CAS  PubMed  Google Scholar 

S.S. van Santen et al. Fractures, bone mineral density, and final height in craniopharyngioma patients with a follow-up of 16 years. J. Clin. Endocrinol. Metab. 105(4), e1397–e1407 (2020)

PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif