A bibliometric analysis of the role of nanotechnology in dark fermentative biohydrogen production

Ahmad A, Rambabu K, Hasan SW, Show PL, Banat F (2023) Biohydrogen production through dark fermentation: recent trends and advances in transition to a circular bioeconomy. Int J Hydrog Energyhttps://doi.org/10.1016/j.ijhydene.2023.05.161

Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrog Energy 36:7443–7459. https://doi.org/10.1016/j.ijhydene.2011.03.116

Article  CAS  Google Scholar 

Aria M, Cuccurullo C (2017) bibliometrix: an R-tool for comprehensive science mapping analysis. J Inform 11:959–975. https://doi.org/10.1016/j.joi.2017.08.007

Article  Google Scholar 

Bao M, Su H, Tan T (2013) Dark fermentative bio-hydrogen production: effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel 112:38–44. https://doi.org/10.1016/j.fuel.2013.04.063

Article  CAS  Google Scholar 

Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Biores Technol 133:109–117. https://doi.org/10.1016/j.biortech.2012.12.168

Article  CAS  Google Scholar 

Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani A, Kumar G, Yang Y-H (2021) Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci Total Environ 765:144429. https://doi.org/10.1016/j.scitotenv.2020.144429

Article  CAS  Google Scholar 

Boshagh F, Rostami K, Moazami N (2019) Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. Int J Hydrog Energy 44:14395–14405. https://doi.org/10.1016/j.ijhydene.2018.11.199

Article  CAS  Google Scholar 

Bosu S, Rajamohan N (2022) Nanotechnology approach for enhancement in biohydrogen production- review on applications of nanocatalyst and life cycle assessment. Fuel 323:124351. https://doi.org/10.1016/j.fuel.2022.124351

Article  CAS  Google Scholar 

Budiman PM, Wu TY (2018) Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Convers Manage 165:509–527. https://doi.org/10.1016/j.enconman.2018.01.058

Article  CAS  Google Scholar 

Catumba BD, Sales MB, Borges PT, Ribeiro Filho MN, Lopes AAS, de Sousa Rios MA, Desai AS, Bilal M, dos Santos JCS (2023) Sustainability and challenges in hydrogen production: an advanced bibliometric analysis. Int J Hydrog Energy 48:7975–7992. https://doi.org/10.1016/j.ijhydene.2022.11.215

Article  CAS  Google Scholar 

Chandran EM, Mohan E (2023) Sustainable biohydrogen production from lignocellulosic biomass sources — metabolic pathways, production enhancement, and challenges. Environ Sci Pollut Re 30:102129102157. https://doi.org/10.1007/s11356-023-29617-z

Article  CAS  Google Scholar 

Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB (2022) Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. Biores Technol 351:127045. https://doi.org/10.1016/j.biortech.2022.127045

Article  CAS  Google Scholar 

Córdova-Lizama A, Carrera-Figueiras C, Palacios A, Castro-Olivera P, Ruiz-Espinoza J (2022) Improving hydrogen production from the anaerobic digestion of waste activated sludge: effects of cobalt and iron zero valent nanoparticles. Int J Hydrog Energy 47:30074–30084. https://doi.org/10.1016/j.ijhydene.2022.06.187

Article  CAS  Google Scholar 

Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol 48:7536–7543. https://doi.org/10.1021/es5016789

Article  CAS  Google Scholar 

Ding L, Cheng J, Lin R, Deng C, Zhou J, Murphy JD (2020) Improving biohydrogen and biomethane co-production via two-stage dark fermentation and anaerobic digestion of the pretreated seaweed Laminaria digitata. J Clean Prod 251:119666. https://doi.org/10.1016/j.jclepro.2019.119666

Article  CAS  Google Scholar 

Elbeshbishy E, Dhar BR, Nakhla G, Lee H-S (2017) A critical review on inhibition of dark biohydrogen fermentation. Renew Sust Energ Rev 79:656–668. https://doi.org/10.1016/j.rser.2017.05.075

Article  CAS  Google Scholar 

Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujii M, Yoshimura C, Tawfik A (2017) Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convers Manage 140:133–144. https://doi.org/10.1016/j.enconman.2017.02.080

Article  CAS  Google Scholar 

Ghasemi M, Daud WRW, Hassan SH, Oh S-E, Ismail M, Rahimnejad M, Jahim JM (2013) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255. https://doi.org/10.1016/j.jallcom.2013.05.094

Article  CAS  Google Scholar 

Ghimire A, Trably E, Frunzo L, Pirozzi F, Lens PNL, Esposito G, Cazier EA, Escudié R (2018) Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Biores Technol 248:180–186. https://doi.org/10.1016/j.biortech.2017.07.062

Article  CAS  Google Scholar 

Gopalakrishnan B, Khanna N, Das D (2019): Dark-fermentative biohydrogen production, Biohydrogen. Elsevier, pp. 79–122 https://doi.org/10.1016/B978-0-444-64203-5.00004-6

Han H, Cui M, Wei L, Yang H, Shen J (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Biores Technol 102:7903–7909. https://doi.org/10.1016/j.biortech.2011.05.089

Article  CAS  Google Scholar 

Hellal MS, Abou-Taleb EM, Rashad AM, Hassan GK (2022) Boosting biohydrogen production from dairy wastewater via sludge immobilized beads incorporated with polyaniline nanoparticles. Biomass Bioenergy 162:106499. https://doi.org/10.1016/j.biombioe.2022.106499

Article  CAS  Google Scholar 

Hsieh P-H, Lai Y-C, Chen K-Y, Hung C-H (2016) Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements. Int J Hydrog Energy 41:21685–21691. https://doi.org/10.1016/2Fj.ijhydene.2016.06.197

Article  CAS  Google Scholar 

Jayachandran V, Basak N, De Philippis R, Adessi A (2022) Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective. Bioprocess Biosyst Eng 45:1595–1624. https://doi.org/10.1007/s00449-022-02738-4

Article  CAS  Google Scholar 

Klavans R, Boyack KW (2011) Using global mapping to create more accurate document-level maps of research fields. J Am Soc Inf Sci Technol 62:1–18. https://doi.org/10.1002/asi.21444

Article  Google Scholar 

Köhler J, Geels FW, Kern F, Markard J, Onsongo E, Wieczorek A, Alkemade F, Avelino F, Bergek A, Boons F (2019) An agenda for sustainability transitions research: State of the art and future directions. Environ Innov Soc Trans 31:1–32. https://doi.org/10.1016/j.eist.2019.01.004

Article  Google Scholar 

Kumar G, Mathimani T, Rene ER, Pugazhendhi A (2019) Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. Int J Hydrog Energy 44:13106–13113. https://doi.org/10.1016/j.ijhydene.2019.03.131

Article  CAS  Google Scholar 

Le DTH, Nitisoravut R (2015) Modified hydrotalcites for enhancement of biohydrogen production. Int J Hydrog Energy 40:12169–12176. https://doi.org/10.3390/en15207783

Article  CAS  Google Scholar 

Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy JD (2017) Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Biores Technol 239:345–352. https://doi.org/10.1016/j.biortech.2017.05.017

Article  CAS  Google Scholar 

Liu W, Sun L, Li Z, Fujii M, Geng Y, Dong L, Fujita T (2020) Trends and future challenges in hydrogen production and storage research. Environ Sci Pollut Re 27:31092–31104. https://doi.org/10.1007/s11356-020-09470-0

Article  CAS  Google Scholar 

Machineni L, Deepanraj B, Chew KW, Rao AG (2023) Biohydrogen production from lignocellulosic feedstock: abiotic and biotic methods. Renew Sust Energ Rev 182:113344. https://doi.org/10.1016/j.rser.2023.113344

Article  CAS  Google Scholar 

Messerli P, Murniningtyas E, Eloundou-Enyegue P, Foli EG, Furman E, Glassman A, Hernández Licona G, Kim EM, Lutz W, Moatti J-P (2019) Global sustainable development report 2019: the future is now–science for achieving sustainable development

Mishra A, Bhatt R, Bajpai J, Bajpai A (2021) Nanomaterials based biofuel cells: a review. Int J Hydrog Energy 46:19085–19105. https://doi.org/10.1016/j.ijhydene.2021.03.024

Article  CAS  Google Scholar 

Mishra P, Krishnan S, Rana S, Singh L, Sakinah M, Ab Wahid Z (2019) Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Rev 24:27–37. https://doi.org/10.1016/j.esr.2019.01.001

Article  Google Scholar 

Mishra P, Johnravindar D, Wong J, Zhao J (2022) Metals and metallic composites as emerging nanocatalysts for fermentative hydrogen production. Sustain Energy Fuels. https://doi.org/10.1039/D2SE01165D

Article  Google Scholar 

Morsy FM (2014) Hydrogen production by Escherichia coli without nitrogen sparging and subsequent use of the waste culture for fast mass scale one-pot green synthesis of silver nanoparticles. Int J Hydrog Energy 39:11902–11912. https://doi.org/10.1016/j.ijhydene.2014.06.007

Article  CAS  Google Scholar 

Mühl DD, de Oliveira L (2022) A bibliometric and thematic approach to agriculture 4.0. Heliyon 8

Organization WH (2017) World health statistics 2017: monitoring health for the SDGs. sustainable development goals 7 https://doi.org/10.1016/j.heliyon.2022.e09369

Park J-H, Chandrasekhar K, Jeon B-H, Jang M, Liu Y, Kim S-H (2021) State-of-the-art technologies for continuous high-rate biohydrogen production. Biores Technol 320:124304. https://doi.org/10.1016/j.biortech.2020.124304

Article  CAS  Google Scholar 

Patel P, Vyas N, Raval M (2021) Safety and toxicity issues of polymeric nanoparticles: a serious concern. Nanotechnology in Medicine: Toxicity and Safety: 156–173. https://doi.org/10.1002/9781119769897.ch7

Petroleum B (2021) Full Report—Statistical Review of World Energy 2021. British Petroleum: London, UK: 1–70

Petroleum B (2022): Statistical Review of World Energy 2022. BP

Phan PT, Nguyen B-S, Nguyen T-A, Kumar A, Nguyen V-H (2023) Lignocellulose-derived monosugars: a review of biomass pre-treating techniques and post-methods to produce sustainable biohydrogen. Biomass Convers Biorefin 13: 8425–8439. https://link.springer.com/article/https://doi.org/10.1007/s13399-020-01161-7

Pugazhendhi A, Shobana S, Nguyen DD, Banu JR, Sivagurunathan P, Chang SW, Ponnusamy VK, Kumar G (2019) Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. Int J Hydrog Energy 44:1431–1440. https://doi.org/10.1016/j.ijhydene.2018.11.114

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif