Lymphatic vessels in patients with crescentic glomerulonephritis: association with renal pathology and prognosis

Segelmark M, Hellmark T (2019) Anti-glomerular basement membrane disease: an update on subgroups, pathogenesis and therapies. Nephrol Dial Transplant 34(11):1826–1832. https://doi.org/10.1093/ndt/gfy327

Article  CAS  PubMed  Google Scholar 

Chen S, Tang Z, Xiang H et al (2016) Etiology and outcome of crescentic glomerulonephritis from a single center in China: a 10-year review. Am J Kidney Dis 67(3):376–383. https://doi.org/10.1053/j.ajkd.2015.07.034

Article  PubMed  Google Scholar 

Linke A, Tiegs G, Neumann K (2022) Pathogenic T-Cell responses in immune-mediated glomerulonephritis. Cells 11(10):1625. https://doi.org/10.3390/cells11101625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen A, Lee K, Guan T et al (2020) Role of CD8+ T cells in crescentic glomerulonephritis. Nephrol Dial Transplant 35(4):564–572. https://doi.org/10.1093/ndt/gfz043

Article  CAS  PubMed  Google Scholar 

Han Y, Ma FY, Di Paolo J et al (2018) An inhibitor of spleen tyrosine kinase suppresses experimental crescentic glomerulonephritis. Int J Immunopathol Pharmacol. https://doi.org/10.1177/2058738418783404

Article  PubMed  PubMed Central  Google Scholar 

Gu QH, Huynh M, Shi Y et al (2020) Experimental antiglomerular basement membrane GN induced by a peptide from actinomyces. J Am Soc Nephrol 31(6):1282–1295. https://doi.org/10.1681/ASN.2019060619

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rousselle A, Sonnemann J, Amann K et al (2022) CSF2-dependent monocyte education in the pathogenesis of ANCA-induced glomerulonephritis. Ann Rheum Dis 81(8):1162–1172. https://doi.org/10.1136/annrheumdis-2021-221984

Article  CAS  PubMed  Google Scholar 

Chen J, Huang XR, Yang F et al (2022) Single-cell RNA sequencing identified novel Nr4a1(+) Ear2(+) anti-inflammatory macrophage phenotype under myeloid-TLR4 dependent regulation in anti-glomerular basement membrane (GBM) crescentic glomerulonephritis (cGN). Adv Sci (Weinh). 9(18):e2200668. https://doi.org/10.1002/advs.202200668

Article  CAS  PubMed  Google Scholar 

Binda V, Moroni G, Messa P (2018) ANCA-associated vasculitis with renal involvement. J Nephrol 31(2):197–208. https://doi.org/10.1007/s40620-017-0412-z

Article  CAS  PubMed  Google Scholar 

Jackson DG (2019) Hyaluronan in the lymphatics: the key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 78–79:219–235. https://doi.org/10.1016/j.matbio.2018.02.001

Article  CAS  PubMed  Google Scholar 

Pei G, Yao Y, Yang Q et al (2019) Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv 5(6):eaaw5075. https://doi.org/10.1126/sciadv.aaw5075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jafree DJ, Long DA (2020) Beyond a passive conduit: implications of lymphatic biology for kidney diseases. J Am Soc Nephrol 31(6):1178–1190. https://doi.org/10.1681/ASN.2019121320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zarjou A, Black LM, Bolisetty S et al (2019) Dynamic signature of lymphangiogenesis during acute kidney injury and chronic kidney disease. Lab Invest 99(9):1376–1388. https://doi.org/10.1038/s41374-019-0259-0

Article  PubMed  PubMed Central  Google Scholar 

Pei G, Zeng R, Han M et al (2014) Renal interstitial infiltration and tertiary lymphoid organ neogenesis in IgA nephropathy. Clin J Am Soc Nephrol 9(2):255–264. https://doi.org/10.2215/CJN.01150113

Article  CAS  PubMed  Google Scholar 

Sethi S, Haas M, Markowitz GS et al (2016) Mayo clinic/renal pathology society consensus report on pathologic classification, diagnosis, and reporting of GN. J Am Soc Nephrol 27(5):1278–1287. https://doi.org/10.1681/ASN.2015060612

Article  PubMed  Google Scholar 

Vosough Z, Golbini S, Sharbatdaran M et al (2021) D2–40 a helpful marker in assessment of lymphatic vessel invasion in carcinoma of breast. Iran J Pathol 16(2):96–102. https://doi.org/10.30699/IJP.2020.114511.2245

Article  PubMed  Google Scholar 

Charoentong P, Finotello F, Angelova M et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262. https://doi.org/10.1016/j.celrep.2016.12.019

Article  CAS  PubMed  Google Scholar 

Zimmer JK, Dahdal S, Muhlfeld C et al (2010) Lymphangiogenesis is upregulated in kidneys of patients with multiple myeloma. Anat Rec (Hoboken) 293(9):1497–1505. https://doi.org/10.1002/ar.21189

Article  PubMed  Google Scholar 

Sakamoto I, Ito Y, Mizuno M et al (2009) Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int 75(8):828–838. https://doi.org/10.1038/ki.2008.661

Article  CAS  PubMed  Google Scholar 

Yan P, Ke B, Song J et al (2023) Identification of immune-related molecular clusters and diagnostic markers in chronic kidney disease based on cluster analysis. Front Genet. https://doi.org/10.3389/fgene.2023.1111976

Article  PubMed  PubMed Central  Google Scholar 

Deng X, Gao J, Zhao F (2022) Identification of differentially expressed genes and pathways in kidney of ANCA-associated vasculitis by integrated bioinformatics analysis. Ren Fail 44(1):204–216. https://doi.org/10.1080/0886022X.2022.2030755

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Chou CL, Knepper MA (2021) Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron. J Am Soc Nephrol 32(4):886–896. https://doi.org/10.1681/ASN.2020101407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Svenningsen P, Hinrichs GR, Zachar R et al (2017) Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 469(11):1415–1423. https://doi.org/10.1007/s00424-017-2014-y

Article  CAS  PubMed  Google Scholar 

Kitching AR, Holdsworth SR, Tipping PG (1999) IFN-gamma mediates crescent formation and cell-mediated immune injury in murine glomerulonephritis. J Am Soc Nephrol 10(4):752–759. https://doi.org/10.1681/ASN.V104752

Article  CAS  PubMed  Google Scholar 

Chen M, Jayne DRW, Zhao MH (2017) Complement in ANCA-associated vasculitis: mechanisms and implications for management. Nat Rev Nephrol 13(6):359–367. https://doi.org/10.1038/nrneph.2017.37

Article  CAS  PubMed  Google Scholar 

Riedel JH, Turner JE, Panzer U (2021) T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 385(2):281–292. https://doi.org/10.1007/s00441-020-03403-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schena FP (1999) Cytokine network and resident renal cells in glomerular diseases. Nephrol Dial Transplant 14(Suppl 1):22–26. https://doi.org/10.1093/ndt/14.suppl_1.22

Article  PubMed  Google Scholar 

Schreiber A, Rolle S, Peripelittchenko L et al (2010) Phosphoinositol 3-kinase-gamma mediates antineutrophil cytoplasmic autoantibody-induced glomerulonephritis. Kidney Int 77(2):118–128. https://doi.org/10.1038/ki.2009.420

Article  CAS  PubMed  Google Scholar 

Prevo R, Banerji S, Ferguson DJ et al (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276(22):19420–19430. https://doi.org/10.1074/jbc.M011004200

Article  CAS  PubMed  Google Scholar 

Lee HW, Qin YX, Kim YM et al (2011) Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney. Cell Tissue Res 343(2):429–444. https://doi.org/10.1007/s00441-010-1098-x

Article  CAS  PubMed  Google Scholar 

Muchowicz A, Wachowska M, Stachura J et al (2017) Inhibition of lymphangiogenesis impairs antitumour effects of photodynamic therapy and checkpoint inhibitors in mice. Eur J Cancer 83:19–27. https://doi.org/10.1016/j.ejca.2017.06.004

Article  CAS  PubMed  Google Scholar 

Lund AW, Wagner M, Fankhauser M et al (2016) Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest 126(9):3389–3402. https://doi.org/10.1172/JCI79434

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif