Prediction of B cell epitopes in envelope protein of dengue virus using immunoinformatics approach

Aguiar M, Stollenwerk N, Halstead SB (2016) The impact of the newly licensed dengue vaccine in endemic countries. PLoS Negl Trop Dis 10(12):e0005179. https://doi.org/10.1371/journal.pntd.0005179

Article  PubMed  PubMed Central  Google Scholar 

Akhtar N, Joshi A, Kaushik V, Kumar M, Amin-ulMannan M (2021) In-silico design of a multivalent epitope-based vaccine against Candida auris. Microb Pathog 155:104879

Article  CAS  PubMed  Google Scholar 

Arnold C (2020) How computational immunology changed the face of COVID-19 vaccine development. Nat Med. https://doi.org/10.1038/d41591-020-00027-9

Article  PubMed  Google Scholar 

Backert L, Kohlbacher O (2015) Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med 7:119

Article  PubMed  PubMed Central  Google Scholar 

Bergamaschi G, Fassi EMA, Romanato A, D’Annessa I, Odinolfi MT, Brambilla D, Damin F, Chiari M, Gori A, Colombo G, Cretich M (2019) Computational analysis of dengue virus envelope protein (E) reveals an epitope with flavivirus immunodiagnostic potential in peptide microarrays. Int J Mol Sci 20(8):1921

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourdette D et al (2005) A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Mult Scler J 11(5):552–561

Article  CAS  Google Scholar 

Brien SP, Swanstrom AE, Pegu A, Ko S-Y, Immonen TT, Del Prete GQ, Fennessey CM, Gorman J, Foulds KE, Schmidt SD et al (2019) Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathog 15:e1007632

Article  Google Scholar 

Chen HZ, Tang LL, Yu XL et al (2020) Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2. Infect Dis Poverty 9:88

Article  PubMed  PubMed Central  Google Scholar 

Choudhary MC, Gupta E, Sharma S, Hasnain N, Agarwala P (2017) Genetic signatures coupled with lineage shift characterise endemic evolution of dengue virus serotype 2 during 2015 outbreak in Delhi, India. Trop Med Int Health 22(7):871–880

Article  CAS  PubMed  Google Scholar 

Crooke SN, Ovsyannikova IG, Kennedy RB et al (2020) Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Sci Rep 10:14179

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dharani A, Ezhilarasi DR, Priyadarsini G, Abhinand PA (2023) Multi-epitope vaccine candidate design for dengue virus. Bioinformation 19(5):628–632

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v. 2—a server for in silico prediction of allergens. J Mol Model 20(6):2278

Article  PubMed  Google Scholar 

Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:4

Article  Google Scholar 

Fadaka AO, Sibuyi NRS, Martin DR et al (2021) Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci Rep 11:19707

Article  CAS  PubMed  PubMed Central  Google Scholar 

Florea L, et al. (2003) Epitope prediction algorithms for peptide-based vaccine design. In: Proceedings of IEEE, pp 17–26

Flower DR (2007) Immunoinformatics: predicting immunogenicity in silico, 1st edn. Humana Press, Totowa

Book  Google Scholar 

Foster JE, Bennett SN, Carrington CV, Vaughan H, McMillan WO (2004) Phylogeography and molecular evolution of dengue 2 in the Caribbean basin, 1981–2000. Virology 24(1):48–59

Article  Google Scholar 

Guedes IA, Barreto AMS, Marinho D, Krempser E, Kuenemann MA, Sperandio O, Dardenne LE, Miteva MA (2021) New machine learning and physics-based scoring functions for drug discovery. Sci Rep 11(1):3198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta S et al (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8:e73957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshi A, Ray NM, Singh J et al (2022) T-cell epitope-based vaccine designing against orthohantavirus: a causative agent of deadly cardio-pulmonary disease. Netw Model Anal Health Inform Bioinforma 11:2

Article  PubMed  Google Scholar 

Kaushik V, Sunil Krishnan G, Gupta LR, Kalra U, Shaikh AR, Cavallo L, Chawla M (2022) Immunoinformatics aided design and in-vivo validation of a cross-reactive peptide based multi-epitope vaccine targeting multiple serotypes of dengue virus. Front Immunol 13:865180

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan F, Kumar A (2021a) An integrative docking and simulation-based approach towards the development of epitope-based vaccine against enterotoxigenic Escherichia coli. Netw Model Anal Health Infor Bioinform 10:11

Article  Google Scholar 

Khan F, Kumar A (2021b) Vaccine design and immunoinformatics. In: Singh V, Kumar A (eds) Advances in bioinformatics. Springer, Singapore, pp 137–149

Chapter  Google Scholar 

Khan F, Srivastava V, Kumar A (2018) Epitope based peptide prediction from proteome of enterotoxigenic E. coli. Int J Pept Res Ther 24:323–336

Article  CAS  Google Scholar 

Khan F, Srivastava V, Kumar A (2019) Computational identification and characterization of potential T-cell epitope for the utility of vaccine design against enterotoxigenic Escherichia coli. Int J Pept Res Ther 25:289–302

Article  CAS  Google Scholar 

Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107(4):477–484

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnan GS, Joshi A, Kaushik V (2020) T cell epitope designing for dengue peptide vaccine using docking and molecular simulation studies. Mol Simul 46(10):787–795

Article  Google Scholar 

Kumar A, Jain A, Verma SK (2013) Screening and structure-based modeling of T-cell epitopes of Marburg virus NP, GP and VP40: an immunoinformatic approach for designing peptide-based vaccine. Trends Bioinform 6(1):10

Article  CAS  Google Scholar 

Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S (2018) CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res. https://doi.org/10.1093/nar/gky356

Article  PubMed  PubMed Central  Google Scholar 

Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

Article  PubMed  PubMed Central  Google Scholar 

L`opez JA et al (2001) A synthetic malaria vaccine elicits a potent CD8+ and CD4+ T lymphocyte immune response in humans. Implications for vaccination strategies. Eur J Immunol 31(7):1989–1998

Article  CAS  Google Scholar 

Lon JR, Bai Y, Zhong B et al (2020) Prediction and evolution of B cell epitopes of surface protein in SARS-CoV-2. Virol J 17:165

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markoff L (2003) 5′- and 3′-noncoding regions in flavivirus RNA. Adv Virus Res 59:177–228

Article  CAS  PubMed  Google Scholar 

Martinez-Arzate SG, Tenorio-Borroto E, BarbabosaPliego A, Diaz-Albiter HM, Vazquez-Chagoyan JC, Gonzalez-Diaz H (2017) PTML model for proteome mining of B-cell epitopes and theoretical-experimental study of Bm86 protein sequences from Colima, Mexico. J Proteome Res 16:4093–4103

Article  CAS  PubMed  Google Scholar 

Murphy BR, Whitehead SS (2011) Immune response to dengue virus and prospects for a vaccine. Annu Rev Immunol 29:587–619

Article  CAS  PubMed  Google Scholar 

National center for vector borne diseases control. NVBDCP (2019) Dengue cases and deaths in the country since 2015. https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715. Accessed 28 Aug 2019

National center for vector borne diseases control. NVBDCP (2021). https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715. Accessed Oct 2021

Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Peters SB (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9:514

Article  Google Scholar 

Proutski V, Gritsun TS, Gould EA, Holmes EC (1999) Biological consequences of deletions within the 3′-untranslated region of flavi-viruses may be due to rearrangements of RNA secondary structure. Virus Res 64(2):107–123

Article  CAS  PubMed  Google Scholar 

Rahman N, Ali F, Basharat Z, Shehroz M, Khan MK, Jeandet P, Nepovimova E, Kuca K, Khan H (2020) Vaccine design from the ensemble of surface glycoprotein epitopes of SARS-CoV-2: an immunoinformatics approach. Vaccines 8(3):423

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rico-Hesse R, Harrison LM, Salas RA et al (1997) Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230:244–251

Article  CAS  PubMed 

留言 (0)

沒有登入
gif