Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach

Delatycki MB, Williamson R, Forrest SM (2000) Friedreich ataxia: an overview. J Med Genet 37(1):1–8. https://doi.org/10.1136/jmg.37.1.1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brice A, Pulst S-M (2007) Spinocerebellar degenerations: the ataxias and spastic paraplegias. Elsevier

Google Scholar 

Pandolfo M (2009) Friedreich ataxia: the clinical picture. J Neurol 256(Suppl 1):3–8. https://doi.org/10.1007/s00415-009-1002-3

Article  PubMed  Google Scholar 

Cook A, Giunti P (2017) Friedreich’s ataxia: clinical features, pathogenesis and management. Br Med Bull 124(1):19–30. https://doi.org/10.1093/bmb/ldx034.PMID:29053830;PMCID:PMC5862303

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porcu L, Fichera M, Nanetti L, Rulli E, Giunti P, Parkinson M, Durr A, Ewenczyk C, Boesch S, Nachbauer W, Indelicato E, Klopstock T, Stendel C, Rodriguez de Rivera F, Schöls L, Fleszar Z, Giordano I, Didszun C, Castaldo A, Mariotti C (2023) Longitudinal changes of SARA scale in Friedreich ataxia: Strong influence of baseline score and age at onset. Ann Clin Trans Neurol. https://doi.org/10.1002/acn3.51886

Article  Google Scholar 

Corben LA, Collins V, Milne S et al (2022) Clinical management guidelines for Friedreich ataxia: best practice in rare diseases. Orphanet J Rare Dis 17:415. https://doi.org/10.1186/s13023-022-02568-3

Article  PubMed  PubMed Central  Google Scholar 

Taanman, J.-W., & Williams, S. L. (2002). Structure and Function of the Mitochondrial Oxidative Phosphorylation System. In A. H. V. Schapira & S. DiMauro (Eds.), Blue Books of Practical Neurology (Vol. 26, pp. 1–34). Butterworth-Heinemann. https://doi.org/10.1016/S1877-3419(09)70060-1

Mailloux, Ryan & Jin, Xiaolei & Willmore, William. (2013). Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol. 2. https://doi.org/10.1016/j.redox.2013.12.011.

Mailloux RJ (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 4:381–398. https://doi.org/10.1016/j.redox.2015.02.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Čapková, M., Hansíková, H., Godinot, C., Houšťková, H., Houštěk, J., & Zeman, J. (2002). Nová missense mutace 574C>T v genu SURF1 - biochemická a molekulárně genetická studie u sedmi dětí s Leighovým syndromem [Novel missense mutation 574C>T in SURF1 gene - biochemical and molecular studies in seven children with Leigh syndrome]. Časopis Lékařů Českých, 141(20), 636–641. ISSN 0008–7335. http://hdl.handle.net/11104/0017363

Worth AJ, Basu SS, Deutsch EC, Hwang WT, Snyder NW, Lynch DR, Blair IA (2015) Stable isotopes and LC-MS for monitoring metabolic disturbances in Friedreich’s ataxia platelets. Bioanalysis 7(15):1843–1855. https://doi.org/10.4155/bio.15.118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, Guo L, Strawser CJ, Hauser LA, Hwang WT et al (2018) Low apolipoprotein A-I levels in Friedreich’s ataxia and in frataxin-deficient cells: Implications for therapy. PLoS ONE 13(2):e0192779. https://doi.org/10.1371/journal.pone.0192779

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Rozwadowska N, Clark A et al (2019) Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich’s ataxia cardiomyocytes. Stem Cell Research 40:101529. https://doi.org/10.1016/j.scr.2019.101529

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotticelli, M. G., Xia, S., Truitt, R., Doliba, N. M., Rozo, A. V., Tobias, J. W., Lee, T., Chen, J., Napierala, J. S., Napierala, M., Yang, W., & Wilson, R. B. (2023). Acute frataxin knockdown in induced pluripotent stem cell-derived cardiomyocytes activates a type I interferon response. *Disease Models & Mechanisms, 16*(5), dmm049497. https://doi.org/10.1242/dmm.049497

Sayles, N. M., Napierala, J. S., Anrather, J., Diedhiou, N., Li, J., Napierala, M., Puccio, H., & Manfredi, G. (2023). Comparative multi-omic analyses of cardiac mitochondrial stress in three mouse models of frataxin deficiency. Disease models & mechanisms, 16(10), dmm050114. https://doi.org/10.1242/dmm.050114

Tsai CL, Barondeau DP (2010) Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 49(43):9132–9139. https://doi.org/10.1021/bi1013062

Article  CAS  PubMed  Google Scholar 

Rötig A, De Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nature Genet 17:215–217

Article  PubMed  Google Scholar 

Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH (2000) Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum Mol Genet 9(2):275–282. https://doi.org/10.1093/hmg/9.2.275

Article  CAS  PubMed  Google Scholar 

Nachbauer W, Boesch S, Reindl M, Eigentler A, Hufler K, Poewe W, Löscher, W., Wanschitz, J. (2012) Skeletal Muscle Involvement in Friedreich Ataxia and Potential Effects of Recombinant Human Erythropoietin Administration on Muscle Regeneration and Neovascularization. J Neuropathol Exp Neurol 71(8):708–715. https://doi.org/10.1097/NEN.0b013e31825fed76

Article  CAS  PubMed  Google Scholar 

Smith, F. M., & Kosman, D. J. (2020). Molecular Defects in Friedreich’s Ataxia: Convergence of Oxidative Stress and Cytoskeletal Abnormalities. Frontiers in Molecular Biosciences, 7. https://doi.org/10.3389/fmolb.2020.569293

Davide D, Federica C, Marco B, Elisa B, Silvia M, Giulia T, Federica D, Ottaviani D, Elena M, Luigi L, Elisa G, Elena Z, Antonella R, Milena B, Geppo S, Donatella C, Leonardo S, Paola C (2023) Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain. Cell Death Dis 14(12):805. https://doi.org/10.1038/s41419-023-06320-y

Article  CAS  Google Scholar 

Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. BioFactors (Oxford, England) 18(1–4):163–171. https://doi.org/10.1002/biof.5520180219

Article  CAS  PubMed  Google Scholar 

Parkinson MH, Schulz JB, Giunti P (2013) Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J Neurochem 126(Suppl 1):125–141. https://doi.org/10.1111/jnc.12322

Article  CAS  PubMed  Google Scholar 

El-Hattab, A. W., & Scaglia, F. (2016). Mitochondrial Cardiomyopathies. Frontiers in Cardiovascular Medicine, 3. https://doi.org/10.3389/fcvm.2016.00025

Zhou B, Tian R (2018) Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Investig. https://doi.org/10.1172/JCI120849

Article  PubMed  PubMed Central  Google Scholar 

Kubánek M, Schimerová T, Piherová L, Brodehl A, Krebsová A, Ratnavadivel S, Stanasiuk C, Hansíková H, Zeman J, Paleček T, Houštěk J, Drahota Z, Nůsková H, Mikešová J, Zámečník J, Macek M Jr, Ridzoň P, Malusková J, Stránecký V, Melenovský V, Milting H, Kmoch S (2020) Desminopathy: novel desmin variants, a new cardiac phenotype, and further evidence for secondary mitochondrial dysfunction. J Clin Med 9(4):937. https://doi.org/10.3390/jcm9040937

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramaccini, D., Montoya-Uribe, V., Aan, F. J., Modesti, L., Potes, Y., Wieckowski, M. R., et al. (2021). Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Frontiers in Cell and Developmental Biology, 8, [Sec. Cellular Biochemistry]. https://doi.org/10.3389/fcell.2020.624216

Clark, E. (2018). Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease.

Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., Dong, Y. N., Halawani, S., Ngaba, L., & Lynch, D. R. (2021). Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 702: 108698. ISSN 0003–9861. https://doi.org/10.1016/j.abb.2020.108698

Friedreich Ataxia Research Alliance. (2023). FA Research Pipeline. Retrieved December 30, 2023, from https://www.curefa.org/research/research-pipeline

U.S. Food and Drug Administration. (2023). FDA approves first treatment for Friedreich’s ataxia. Retrieved December 30, 2023, https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-first-treatment-friedreichs-ataxia

Lynch DR, Chin MP, Boesch S, Delatycki MB, Giunti P, Goldsberry A, Hoyle JC, Mariotti C, Mathews KD, Nachbauer W, O’Grady M, Perlman S, Subramony SH, Wilmot G, Zesiewicz T, Meyer CJ (2023) Efficacy of omaveloxolone in friedreich’s ataxia: delayed-start analysis of the MOXIe extension. Mov Disord 38(2):313–320. https://doi.org/10.1002/mds.29286

Article  CAS  PubMed  Google Scholar 

Chhimpa V (2023) The novel role of mitochondrial citrate synthase and citrate in the pathophysiology of Alzheimer’s disease. J Alzheimer’s Disease 94(s1):S453–S472. https://doi.org/10.3233/JAD-220514

Article  CAS  Google Scholar 

Melancon S (1979) Pyruvate dehydrogenase, lipoamide dehydrogenase and citrate synthase activity in fibroblasts from patients with friedreich’s and charlevoix-saguenay ataxia.

Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360. https://doi.org/10.1113/jphysiol.2012.230185

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vigelsø A, Andersen NB, Dela F (2014) The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int J Physiol Pathophysiol Pharmacol 6(2):84–101

PubMed  PubMed Central  Google Scholar 

Hayer SN, Liepelt I, Barro C, Wilke C, Kuhle J, Martus P, Schöls L, EFACTS study group (2020) NfL and pNfH are increased in Friedreich’s ataxia. J Neurol 267(5):1420–1430. https://doi.org/10.1007/s00415-020-09722-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clay A, Obrochta KM, Soon RK et al (2020) Neurofilament light chain as a potential biomarker of disease status in Friedreich ataxia. J Neurol 267:2594–2598. https://doi.org/10.1007/s00415-020-09868-3

Article  CAS  PubMed  Google Scholar 

Frempong, B., Wilson, R. B., Schadt, K., & Lynch, D. R. (2021). The Role of Serum Levels of Neurofilament Light (NfL) Chain as a Biomarker in Friedreich Ataxia. Frontiers in neuroscience, 15, 653241. https://doi.org/10.3389/fnins.2021.

Clay, A., Obrochta, K.M., Soon, R.K. et al. Neurofilament light chain as a potential biomarker of disease status in Friedreich ataxia. J Neurol 267, 2594–2598 (2020). https://doi.org/10.1007/s00415-020-09868-3

Fox JE, Austin CD, Reynolds CC, Steffen PK (1991) Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem 266(20):13289–13295. https://doi.org/10.1016/S0021-9258(18)98837-X

Article  CAS  PubMed  Google Scholar 

Rustin, P., Chretien, D., Bourgeron, T., Gérard, B., Rötig, A., Saudubray, J. M., & Munnich, A. (1994). Biochemical and molecular investigations in respiratory chain deficiencies. Clinica chimica acta; international journal of clinical chemistry, 228(1), 35–51. https://doi.org/10.1016/0009-8981(94)90055-8

Srere PA (1969) Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol 13:3–11. https://doi.org/10.1016/0076-6879(69)13005-0

Article  CAS  Google Scholar 

Mosca F, Fattorini D, Bompadre S, Littarru GP (2002) Assay of Coenzyme Q10 in plasma by a single dilution step. Anal Biochem 305:49–54

Article  CAS  PubMed 

留言 (0)

沒有登入
gif