Retinol binding protein 4 and type 2 diabetes: from insulin resistance to pancreatic β-cell function

International Diabetes Federation. IDF Diabetes Atlas, 10th edn. (International Diabetes Federation, Brussels, Belgium, 2021). https://www.diabetesatlas.org

V. Vaidya, N. Gangan, J. Sheehan, Impact of cardiovascular complications among patients with type 2 diabetes mellitus: a systematic review. Expert Rev. Pharmacoecon. Outcomes Res. 15(3), 487–497 (2015). https://doi.org/10.1586/14737167.2015.1024661

Article  PubMed  Google Scholar 

Y. Li, D. Teng, X. Shi, G. Qin, Y. Qin, H. Quan, B. Shi, H. Sun, J. Ba, B. Chen, J. Du, L. He, X. Lai, Y. Li, H. Chi, E. Liao, C. Liu, L. Liu, X. Tang, N. Tong, G. Wang, J.A. Zhang, Y. Wang, Y. Xue, L. Yan, J. Yang, L. Yang, Y. Yao, Z. Ye, Q. Zhang, L. Zhang, J. Zhu, M. Zhu, G. Ning, Y. Mu, J. Zhao, W. Teng, Z. Shan, Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ 369, m997 (2020). https://doi.org/10.1136/bmj.m997

Article  PubMed  PubMed Central  Google Scholar 

N.A. ElSayed, G. Aleppo, V.R. Aroda, R.R. Bannuru, F.M. Brown, D. Bruemmer, B.S. Collins, M.E. Hilliard, D. Isaacs, E.L. Johnson, S. Kahan, K. Khunti, J. Leon, S.K. Lyons, M.L. Perry, P. Prahalad, R.E. Pratley, J.J. Seley, R.C. Stanton, R.A. Gabbay, on behalf of the American Diabetes, Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care 46(Suppl 1), S19–s40 (2023). https://doi.org/10.2337/dc23-S002

A. Bonnefond, P. Froguel, Clustering for a better prediction of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 17(4), 193–194 (2021). https://doi.org/10.1038/s41574-021-00475-4

Article  PubMed  Google Scholar 

L. Quadro, L. Hamberger, V. Colantuoni, M.E. Gottesman, W.S. Blaner, Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models. Mol. Asp. Med. 24(6), 421–430 (2003). https://doi.org/10.1016/s0098-2997(03)00038-4

Article  CAS  Google Scholar 

S.J. Thompson, A. Sargsyan, S.A. Lee, J.J. Yuen, J. Cai, R. Smalling, N. Ghyselinck, M. Mark, W.S. Blaner, T.E. Graham, Hepatocytes are the principal source of circulating RBP4 in mice. Diabetes 66(1), 58–63 (2017). https://doi.org/10.2337/db16-0286

Article  CAS  PubMed  Google Scholar 

T.E. Graham, Q. Yang, M. Blüher, A. Hammarstedt, T.P. Ciaraldi, R.R. Henry, C.J. Wason, A. Oberbach, P.A. Jansson, U. Smith, B.B. Kahn, Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 354(24), 2552–2563 (2006). https://doi.org/10.1056/NEJMoa054862

Article  CAS  PubMed  Google Scholar 

A. Yao-Borengasser, V. Varma, A.M. Bodles, N. Rasouli, B. Phanavanh, M.J. Lee, T. Starks, L.M. Kern, H.J. Spencer 3rd, A.A. Rashidi, R.E. McGehee Jr., S.K. Fried, P.A. Kern, Retinol binding protein 4 expression in humans: relationship to insulin resistance, inflammation, and response to pioglitazone. J. Clin. Endocrinol. Metab. 92(7), 2590–2597 (2007). https://doi.org/10.1210/jc.2006-0816

Article  CAS  PubMed  Google Scholar 

Y. Liu, H. Chen, J. Wang, W. Zhou, R. Sun, M. Xia, Elevated retinol binding protein 4 induces apolipoprotein B production and associates with hypertriglyceridemia. J. Clin. Endocrinol. Metab. 100(5), E720–E728 (2015). https://doi.org/10.1210/jc.2015-1072

Article  CAS  PubMed  Google Scholar 

X. Li, S. Zhu, G. Song, K. Zhang, W. Gao, J. Huang, X. Lu, Retinol-binding protein 4 is closely correlated to blood pressure level and E/A in untreated essential hypertension patients. Ann. Palliat. Med. 8(5), 645–650 (2019). https://doi.org/10.21037/apm.2019.11.07

Article  PubMed  Google Scholar 

Y. Liu, D. Mu, H. Chen, D. Li, J. Song, Y. Zhong, M. Xia, Retinol-binding protein 4 induces hepatic mitochondrial dysfunction and promotes hepatic steatosis. J. Clin. Endocrinol. Metab. 101(11), 4338–4348 (2016). https://doi.org/10.1210/jc.2016-1320

Article  CAS  PubMed  Google Scholar 

V. Karamfilova, A. Gateva, A. Alexiev, N. Zheleva, T. Velikova, R. Ivanova-Boyanova, R. Ivanova, N. Cherkezov, Z. Kamenov, L. Mateva, The association between retinol-binding protein 4 and prediabetes in obese patients with nonalcoholic fatty liver disease. Arch. Physiol. Biochem. 128(1), 217–222 (2022). https://doi.org/10.1080/13813455.2019.1673429

Article  CAS  PubMed  Google Scholar 

X. Wang, X. Chen, H. Zhang, J. Pang, J. Lin, X. Xu, L. Yang, J. Ma, W. Ling, Y. Chen, Circulating retinol-binding protein 4 is associated with the development and regression of non-alcoholic fatty liver disease. Diabetes Metab. 46(2), 119–128 (2020). https://doi.org/10.1016/j.diabet.2019.04.009

Article  CAS  PubMed  Google Scholar 

Y. Liu, D. Wang, H. Chen, M. Xia, Circulating retinol binding protein 4 is associated with coronary lesion severity of patients with coronary artery disease. Atherosclerosis 238(1), 45–51 (2015). https://doi.org/10.1016/j.atherosclerosis.2014.11.016

Article  CAS  PubMed  Google Scholar 

Y. Liu, Y. Zhong, H. Chen, D. Wang, M. Wang, J.S. Ou, M. Xia, Retinol-binding protein-dependent cholesterol uptake regulates macrophage foam cell formation and promotes atherosclerosis. Circulation 135(14), 1339–1354 (2017). https://doi.org/10.1161/circulationaha.116.024503

Article  CAS  PubMed  Google Scholar 

F. Zabetian-Targhi, M.J. Mahmoudi, N. Rezaei, M. Mahmoudi, Retinol binding protein 4 in relation to diet, inflammation, immunity, and cardiovascular diseases. Adv. Nutr. 6(6), 748–762 (2015). https://doi.org/10.3945/an.115.008292

Article  CAS  PubMed  PubMed Central  Google Scholar 

W. Zhou, X. Yuan, J. Li, W. Wang, S. Ye, Retinol binding protein 4 promotes the phenotypic transformation of vascular smooth muscle cells under high glucose condition via modulating RhoA/ROCK1 pathway. Transl. Res. 259, 13–27 (2023). https://doi.org/10.1016/j.trsl.2023.03.004

Article  CAS  PubMed  Google Scholar 

Q. Sun, U.A. Kiernan, L. Shi, D.A. Phillips, B.B. Kahn, F.B. Hu, J.E. Manson, C.M. Albert, K.M. Rexrode, Plasma retinol-binding protein 4 (RBP4) levels and risk of coronary heart disease: a prospective analysis among women in the nurses’ health study. Circulation 127(19), 1938–1947 (2013). https://doi.org/10.1161/circulationaha.113.002073

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Chen, Y. Zhang, A. Yidilisi, Y. Xu, Q. Dong, J. Jiang, Causal associations between circulating adipokines and cardiovascular disease: a Mendelian randomization study. J. Clin. Endocrinol. Metab. 107(6), e2572–e2580 (2022). https://doi.org/10.1210/clinem/dgac048

Article  PubMed  PubMed Central  Google Scholar 

Q. Yang, T.E. Graham, N. Mody, F. Preitner, O.D. Peroni, J.M. Zabolotny, K. Kotani, L. Quadro, B.B. Kahn, Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049), 356–362 (2005). https://doi.org/10.1038/nature03711

Article  CAS  PubMed  Google Scholar 

R. Huang, X. Bai, X. Li, X. Wang, L. Zhao, Retinol-binding protein 4 activates STRA6, provoking pancreatic β-cell dysfunction in type 2 diabetes. Diabetes 70(2), 449–463 (2021). https://doi.org/10.2337/db19-1241

Article  CAS  PubMed  Google Scholar 

P.A. Nono Nankam, M. Blüher, Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol. Cell Endocrinol. 531, 111312 (2021). https://doi.org/10.1016/j.mce.2021.111312

Article  CAS  PubMed  Google Scholar 

J.S. Steinhoff, A. Lass, M. Schupp, Biological functions of RBP4 and its relevance for human diseases. Front. Physiol. 12, 659977 (2021). https://doi.org/10.3389/fphys.2021.659977

Article  PubMed  PubMed Central  Google Scholar 

T. Olsen, R. Blomhoff, Retinol, retinoic acid, and retinol-binding protein 4 are differentially associated with cardiovascular disease, type 2 diabetes, and obesity: an overview of human studies. Adv. Nutr. 11(3), 644–666 (2020). https://doi.org/10.1093/advances/nmz131

Article  PubMed  Google Scholar 

Y.A. Flores-Cortez, M.I. Barragán-Bonilla, J.M. Mendoza-Bello, C. González-Calixto, E. Flores-Alfaro, M. Espinoza-Rojo, Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol. Med. Rep. 26(1), 244 (2022). https://doi.org/10.3892/mmr.2022.12760

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Duggirala, J. Blangero, L. Almasy, T.D. Dyer, K.L. Williams, R.J. Leach, P. O’Connell, M.P. Stern, Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am. J. Hum. Genet. 64(4), 1127–1140 (1999). https://doi.org/10.1086/302316

Article  CAS  PubMed  PubMed Central  Google Scholar 

J.B. Meigs, C.I.M. Panhuysen, R.H. Myers, P.W.F. Wilson, L.A. Cupples, A genome-wide scan for loci linked to plasma levels of glucose and HbA1c in a community-based sample of Caucasian pedigrees: the Framingham Offspring Study. Diabetes 51(3), 833–840 (2002)

Article  CAS  PubMed  Google Scholar 

V. Colantuoni, V. Romano, G. Bensi, C. Santoro, F. Costanzo, G. Raugei, R. Cortese, Cloning and sequencing of a full length cDNA coding for human retinol-binding protein. Nucleic Acids Res. 11(22), 7769–7776 (1983)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Jaconi, K. Rose, G.J. Hughes, J.-H. Saurat, G. Siegenthaler, Characterization of two post-translationally processed forms of human serum retinol-binding protein: altered ratios in chronic renal failure. J. Lipid Res. 36(6), 1247–1253 (1995)

Article  CAS  PubMed  Google Scholar 

C. Tsutsumi, M. Okuno, L. Tannous, R. Piantedosi, M. Allan, D.S. Goodman, W.S. Blaner, Retinoids and retinoid-binding protein expression in rat adipocytes. J. Biol. Chem. 267(3), 1805–1810 (1992)

Article  CAS  PubMed  Google Scholar 

C. Wu, C. Orozco, J. Boyer, M. Leglise, J. Goodale, S. Batalov, C.L. Hodge, J. Haase, J. Janes, J.W. Huss 3rd, A.I. Su, BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10(11), R130 (2009). https://doi.org/10.1186/gb-2009-10-11-r130

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif