N-acetylcysteine regulates oxalate induced injury of renal tubular epithelial cells through CDKN2B/TGF-β/SMAD axis

Thongprayoon C, Krambeck AE, Rule AD (2020) Determining the true burden of kidney stone disease. Nat Rev Nephrol 16(12):736–746. https://doi.org/10.1038/s41581-020-0320-7

Article  PubMed  Google Scholar 

Wang Z, Zhang Y, Zhang J, Deng Q, Liang H (2021) Recent advances on the mechanisms of kidney stone formation (review). Int J Mol Med. https://doi.org/10.3892/ijmm.2021.4982

Article  PubMed  PubMed Central  Google Scholar 

Narula S, Tandon S, Kumar D, Varshney S, Adlakha K, Sengupta S et al (2020) Human kidney stone matrix proteins alleviate hyperoxaluria induced renal stress by targeting cell-crystal interactions. Life Sci 262:118498. https://doi.org/10.1016/j.lfs.2020.118498

Article  CAS  PubMed  Google Scholar 

Burns Z, Knight J, Fargue S, Holmes R, Assimos D, Wood K (2020) Future treatments for hyperoxaluria. Curr Opin Urol 30(2):171–176. https://doi.org/10.1097/mou.0000000000000709

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Chen JJ, Huang JH, Lv BD, Huang XJ, Hu Q et al (2021) Protective effects of total flavonoids from Lysimachia christinae on calcium oxalate-induced oxidative stress in a renal cell line and renal tissue. Evid-Based Complement Alternat Med (eCAM) 2021:6667902. https://doi.org/10.1155/2021/6667902

Article  PubMed  Google Scholar 

Sun Y, Dai S, Tao J, Li Y, He Z, Liu Q et al (2020) Taurine suppresses ROS-dependent autophagy via activating Akt/mTOR signaling pathway in calcium oxalate crystals-induced renal tubular epithelial cell injury. Aging 12(17):17353–17366. https://doi.org/10.18632/aging.103730

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo G, Liu J, Bian T, Zhang Z, Li M (2021) The mechanism of N-acetyl-l-cysteine in improving the secretion of porcine follicle-stimulating hormone in Pichia pastoris. Yeast (Chichester, Engl) 38(11):601–611. https://doi.org/10.1002/yea.3668

Article  CAS  Google Scholar 

Li C, Xie N, Li Y, Liu C, Hou FF, Wang J (2019) N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation. Free Radical Biol Med 130:512–527. https://doi.org/10.1016/j.freeradbiomed.2018.11.006

Article  CAS  Google Scholar 

Fan H, Le JW, Zhu JH (2020) Protective effect of N-acetylcysteine pretreatment on acute kidney injury in septic rats. J Surg Res 254:125–134. https://doi.org/10.1016/j.jss.2020.04.017

Article  CAS  PubMed  Google Scholar 

Oksidatif SOR (2020) The efficacy of N-acetylcysteine against renal oxidative stress after extracorporeal shock wave treatment: an experimental rat model. J Urol Surg 7(1):8–15

Article  Google Scholar 

Desoky EAE, Sakr AM, Alhefnawy M, Omran M, Abdalla MMH, Shahin AS et al (2020) Renal protective effect of N-acetylcysteine with stepwise ramping voltage against extracorporeal shock wave lithotripsy-induced renal injury: a prospective randomized trial. Int Urol Nephrol 52(12):2261–2267. https://doi.org/10.1007/s11255-020-02580-1

Article  CAS  PubMed  Google Scholar 

Yami A, Hamzeloo-Moghadam M, Darbandi A, Karami A, Mashati P, Takhviji V et al (2020) Ergolide, a potent sesquiterpene lactone induces cell cycle arrest along with ROS-dependent apoptosis and potentiates vincristine cytotoxicity in ALL cell lines. J Ethnopharmacol 253:112504. https://doi.org/10.1016/j.jep.2019.112504

Article  CAS  PubMed  Google Scholar 

Xu J, Feng ZP, Peng HY, Fu P (2021) Omega-3 polyunsaturated fatty acids alleviate adenine-induced chronic renal failure via regulating ROS production and TGF-β/SMAD pathway. Eur Rev Med Pharmacol Sci 25(22):6825. https://doi.org/10.26355/eurrev_202111_27221

Article  CAS  PubMed  Google Scholar 

Dou F, Ding Y, Wang C, Duan J, Wang W, Xu H et al (2020) Chrysophanol ameliorates renal interstitial fibrosis by inhibiting the TGF-β/Smad signaling pathway. Biochem Pharmacol 180:114079. https://doi.org/10.1016/j.bcp.2020.114079

Article  CAS  PubMed  Google Scholar 

Liu WR, Lu HT, Zhao TT, Ding JR, Si YC, Chen W et al (2020) Fu-Fang-Jin-Qian-Cao herbal granules protect against the calcium oxalate-induced renal EMT by inhibiting the TGF-β/smad pathway. Pharm Biol 58(1):1115–1122. https://doi.org/10.1080/13880209.2020.1844241

Article  CAS  PubMed  Google Scholar 

Li Y, Yu S, Gan X, Zhang Z, Wang Y, Wang Y et al (2017) MRP-1 and BCRP promote the externalization of phosphatidylserine in oxalate-treated renal epithelial cells: implications for calcium oxalate urolithiasis. Urology 107:271.e9-271.e17. https://doi.org/10.1016/j.urology.2017.05.034

Article  PubMed  Google Scholar 

Li Y, McMartin KE (2009) Strain differences in urinary factors that promote calcium oxalate crystal formation in the kidneys of ethylene glycol-treated rats. Am J Physiol Renal Physiol 296(5):F1080–F1087. https://doi.org/10.1152/ajprenal.90727.2008

Article  CAS  PubMed  Google Scholar 

Jewell DE, Tavener SK, Hollar RL, Panickar KS (2022) Metabolomic changes in cats with renal disease and calcium oxalate uroliths. Metabolomics Off J Metabol Soc 18(8):68. https://doi.org/10.1007/s11306-022-01925-4

Article  CAS  Google Scholar 

Albert A, Paul E, Rajakumar S, Saso L (2020) Oxidative stress and endoplasmic stress in calcium oxalate stone disease: the chicken or the egg? Free Radical Res 54(4):244–253. https://doi.org/10.1080/10715762.2020.1751835

Article  CAS  Google Scholar 

Chaiyarit S, Thongboonkerd V (2020) Mitochondrial dysfunction and kidney stone disease. Front Physiol 11:566506. https://doi.org/10.3389/fphys.2020.566506

Article  PubMed  PubMed Central  Google Scholar 

Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L et al (2021) Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radical Biol Med 169:258–270. https://doi.org/10.1016/j.freeradbiomed.2021.04.023

Article  CAS  Google Scholar 

Samadarsi R, Dutta D (2020) Anti-oxidative effect of mangiferin-chitosan nanoparticles on oxidative stress-induced renal cells. Int J Biol Macromol 151:36–46. https://doi.org/10.1016/j.ijbiomac.2020.02.112

Article  CAS  PubMed  Google Scholar 

Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU (2021) Oxidative stress and its role in cancer. J Cancer Res Ther 17(1):22–28. https://doi.org/10.4103/jcrt.JCRT_862_16

Article  CAS  PubMed  Google Scholar 

Liang X, Su Y, Huo Y (2021) Forkhead box protein O1 (FoxO1)/SERPINB1 ameliorates ROS production in diabetic nephropathy. Food Sci Nutr 9(1):44–51. https://doi.org/10.1002/fsn3.1859

Article  CAS  PubMed  Google Scholar 

Peng Z, Chen W, Wang L, Ye Z, Gao S, Sun X et al (2015) Inhalation of hydrogen gas ameliorates glyoxylate-induced calcium oxalate deposition and renal oxidative stress in mice. Int J Clin Exp Pathol 8(3):2680–2689

PubMed  PubMed Central  Google Scholar 

Khan A, Byer K, Khan SR (2014) Exposure of Madin-Darby canine kidney (MDCK) cells to oxalate and calcium oxalate crystals activates nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. Urology 83(2):510.e1–7. https://doi.org/10.1016/j.urology.2013.10.038

Article  PubMed  Google Scholar 

Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H et al (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 58(2):658–673. https://doi.org/10.1046/j.1523-1755.2000.00212.x

Article  CAS  PubMed  Google Scholar 

Unno R, Kawabata T, Taguchi K, Sugino T, Hamamoto S, Ando R et al (2020) Deregulated MTOR (mechanistic target of rapamycin kinase) is responsible for autophagy defects exacerbating kidney stone development. Autophagy 16(4):709–723. https://doi.org/10.1080/15548627.2019.1635382

Article  CAS  PubMed  Google Scholar 

Singh A, Tandon S, Kumar D, Kaur T, Kesari KK, Tandon C (2022) Insights into the cytoprotective potential of Bergenia ligulata against oxalate-induced oxidative stress and epithelial-mesenchymal transition (EMT) via TGFβ1/p38MAPK pathway in human renal epithelial cells. Urolithiasis. https://doi.org/10.1007/s00240-022-01315-4

Article  PubMed  Google Scholar 

Chaiyarit S, Thongboonkerd V (2012) Changes in mitochondrial proteome of renal tubular cells induced by calcium oxalate monohydrate crystal adhesion and internalization are related to mitochondrial dysfunction. J Proteome Res 11(6):3269–3280. https://doi.org/10.1021/pr300018c

Article  CAS  PubMed  Google Scholar 

Yang M, Yin E, Xu Y, Liu Y, Li T, Dong Z et al (2022) CDKN2B antisense RNA 1 expression alleviates idiopathic pulmonary fibrosis by functioning as a competing endogenous RNA through the miR-199a-5p/Sestrin-2 axis. Bioengineered 13(3):7746–7759. https://doi.org/10.1080/21655979.2022.2044252

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee HA, Chu KB, Moon EK, Quan FS (2021) Histone deacetylase inhibitor-induced CDKN2B and CDKN2D contribute to G2/M Cell cycle arrest incurred by oxidative stress in Hepatocellular carcinoma cells via forkhead box M1 suppression. J Cancer 12(17):5086–5098. https://doi.org/10.7150/jca.60027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SR, Puranik AS, Jiang K, Chen X, Zhu XY, Taylor I et al (2021) Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. J Am Soc Nephrol 32(8):1987–2004. https://doi.org/10.1681/asn.2020091373

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif