Thalamic nuclei volume partially mediates the effects of aerobic capacity on fatigue in people with multiple sclerosis

Marchesi O et al (2022) Current perspectives on the diagnosis and management of fatigue in multiple sclerosis. Expert Rev Neurother 22(8):681–693

Article  CAS  PubMed  Google Scholar 

Leocani L, Colombo B, Comi G (2008) Physiopathology of fatigue in multiple sclerosis. Neurol Sci 29(Suppl 2):S241–S243

Article  PubMed  Google Scholar 

Capone F et al (2020) Fatigue in multiple sclerosis: the role of thalamus. Mult Scler 26(1):6–16

Article  PubMed  Google Scholar 

Kaya Aygünoğlu S et al (2015) Correlation of fatigue with depression, disability level and quality of life in patients with multiple sclerosis. Noro Psikiyatr Ars 52(3):247–251

Article  PubMed  PubMed Central  Google Scholar 

Vaughn CB et al (2020) Fatigue at enrollment predicts EDSS worsening in the New York State multiple sclerosis consortium. Mult Scler 26(1):99–108

Article  PubMed  Google Scholar 

Andreasen AK et al (2010) Fatigue and processing speed are related in multiple sclerosis. Eur J Neurol 17(2):212–218

Article  CAS  PubMed  Google Scholar 

Mackay L et al (2021) Predictors of cognitive fatigue and fatigability in multiple sclerosis. Mult Scler Relat Disord 56:103316

Article  PubMed  Google Scholar 

van Geest Q et al (2018) Information processing speed in multiple sclerosis: Relevance of default mode network dynamics. Neuroimage Clin 19:507–515

Article  PubMed  PubMed Central  Google Scholar 

Calabrese M et al (2010) Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler 16(10):1220–1228

Article  PubMed  Google Scholar 

Bernitsas E et al (2017) Structural and neuronal integrity measures of fatigue severity in multiple sclerosis. Brain Sci. https://doi.org/10.3390/brainsci7080102

Article  PubMed  PubMed Central  Google Scholar 

Li Y et al (2022) Alterations of thalamic nuclei volumes and the intrinsic thalamic structural network in patients with multiple sclerosis-related fatigue. Brain Sci. https://doi.org/10.3390/brainsci12111538

Article  PubMed  PubMed Central  Google Scholar 

Preziosa P et al (2023) Structural and functional magnetic resonance imaging correlates of fatigue and dual-task performance in progressive multiple sclerosis. J Neurol 270(3):1543–1563

Article  CAS  PubMed  Google Scholar 

Hidalgo de la Cruz M et al (2018) Abnormal functional connectivity of thalamic sub-regions contributes to fatigue in multiple sclerosis. Mult Scler 24(9):1183–1195

Article  PubMed  Google Scholar 

Strasser B, Burtscher M (2018) Survival of the fittest: VO(2)max, a key predictor of longevity? Front Biosci (Landmark Ed) 23(8):1505–1516

Article  PubMed  Google Scholar 

Rooney S et al (2019) Is fatigue associated with aerobic capacity and muscle strength in people with multiple sclerosis: a systematic review and meta-analysis. Arch Phys Med Rehabil 100(11):2193–2204

Article  PubMed  Google Scholar 

Mackay CP, Kuys SS, Brauer SG (2017) The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. Neural Plast 2017:4716197

Article  PubMed  PubMed Central  Google Scholar 

Anderson T, Berry NT, Wideman L (2019) Exercise and the hypothalamic–pituitary–adrenal axis: a special focus on acute cortisol and growth hormone responses. Curr Opin Endocrine Metab Res 9:74–77

Article  Google Scholar 

Heine M et al (2017) Does aerobic training alleviate fatigue and improve societal participation in patients with multiple sclerosis? A randomized controlled trial. Mult Scler 23(11):1517–1526

Article  PubMed  PubMed Central  Google Scholar 

Zong B et al (2023) Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 14:1260663

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sandroff BM et al (2022) Thalamic atrophy moderates associations among aerobic fitness, cognitive processing speed, and walking endurance in persons with multiple sclerosis. J Neurol 269(10):5531–5540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petkus AJ et al (2021) Thalamic volume mediates associations between cardiorespiratory fitness (VO(2)max) and cognition in Parkinson’s disease. Parkinsonism Relat Disord. https://doi.org/10.1016/j.parkreldis.2021.03.019

Article  PubMed  PubMed Central  Google Scholar 

Motl RW et al (2015) Cardiorespiratory fitness and its association with thalamic, hippocampal, and basal ganglia volumes in multiple sclerosis. Neuroimage Clin 7:661–666

Article  PubMed  PubMed Central  Google Scholar 

Motl RW et al (2021) Do subcortical gray matter volumes and aerobic capacity account for cognitive-motor coupling in multiple sclerosis? Mult Scler 27(3):401–409

Article  PubMed  Google Scholar 

Tlamsa AP, Brumberg JC (2010) Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus. Somatosens Mot Res 27(1):34–43

Article  PubMed  PubMed Central  Google Scholar 

Ouhaz Z, Fleming H, Mitchell AS (2018) Cognitive functions and neurodevelopmental disorders involving the prefrontal cortex and Mediodorsal thalamus. Front Neurosci. https://doi.org/10.3389/fnins.2018.00033

Article  PubMed  PubMed Central  Google Scholar 

Homman-Ludiye J, Bourne JA (2019) The medial pulvinar: function, origin and association with neurodevelopmental disorders. J Anat 235(3):507–520

Article  PubMed  PubMed Central  Google Scholar 

Nelson AJD (2021) The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2021.02.047

Article  PubMed  PubMed Central  Google Scholar 

Motl RW et al (2017) Exercise in patients with multiple sclerosis. Lancet Neurol 16(10):848–856

Article  PubMed  Google Scholar 

Morozumi T et al (2023) Influence of cardiorespiratory fitness and MRI measures of neuroinflammation on hippocampal volume in multiple sclerosis. J Neurol Neurosurg Psychiatry 95(1):29–36

Article  PubMed  Google Scholar 

Tari AR et al (2019) Are the neuroprotective effects of exercise training systemically mediated? Prog Cardiovasc Dis 62(2):94–101

Article  PubMed  Google Scholar 

Fisk JD et al (1994) Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clin Infect Dis 18(Suppl 1):S79-83

Article  MathSciNet  PubMed  Google Scholar 

Marchesi O et al (2020) Fatigue in multiple sclerosis patients with different clinical phenotypes: a clinical and magnetic resonance imaging study. Eur J Neurol 27(12):2549–2560

Article  CAS  PubMed  Google Scholar 

Fisk JD et al (1994) The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci 21(1):9–14

Article  MathSciNet  CAS  PubMed  Google Scholar 

Herdy AH et al (2016) Cardiopulmonary exercise test: background, applicability and interpretation. Arq Bras Cardiol. https://doi.org/10.5935/abc.20160171

Article  PubMed  PubMed Central  Google Scholar 

van den Akker LE et al (2015) Feasibility and safety of cardiopulmonary exercise testing in multiple sclerosis: a systematic review. Arch Phys Med Rehabil 96(11):2055–2066

Article  PubMed  Google Scholar 

Langeskov-Christensen M et al (2014) Validity and reliability of VO2-max measurements in persons with multiple sclerosis. J Neurol Sci 342(1–2):79–87

Article  PubMed  Google Scholar 

Valverde S et al (2017) Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage 155:159–168

Article  PubMed  Google Scholar 

Iglesias JE et al (2018) A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183(1095–9572):314–326

Article  PubMed  Google Scholar 

Weeland CJ et al (2022) The thalamus and its subnuclei—a gateway to obsessive-compulsive disorder. Transl Psychiatry 12(1):70

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif