Image-based artificial intelligence for the prediction of pathological complete response to neoadjuvant chemoradiotherapy in patients with rectal cancer: a systematic review and meta-analysis

Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A (2023) Colorectal cancer statistics. A Cancer J Clin 73(3):233–254

Article  Google Scholar 

Watanabe T, Muro K, Ajioka Y, Hashiguchi Y, Ito Y, Saito Y et al (2018) Japanese society for cancer of the colon and rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clin Oncol 23(1):1–34

Article  PubMed  Google Scholar 

Wan T, Zhang XF, Liang C, Liao CW, Li JY, Zhou YM (2019) The prognostic value of a pathologic complete response after neoadjuvant therapy for digestive cancer: systematic review and meta-analysis of 21 studies. Ann Surg Oncol 26(5):1412–1420

Article  PubMed  Google Scholar 

Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo LJ et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11(9):835–844

Article  PubMed  Google Scholar 

Marijnen CA (2015) Organ preservation in rectal cancer: have all questions been answered? Lancet Oncol 16(1):e13-22

Article  PubMed  Google Scholar 

Smith JJ, Paty PB, Garcia-Aguilar J (2020) Watch and wait in rectal cancer or more wait and see? JAMA Surg 155(7):657–658

Article  PubMed  PubMed Central  Google Scholar 

LeBlanc JK (2007) Imaging and management of rectal cancer. Nat Clin Pract Gastroenterol Hepatol 4(12):665–676

Article  PubMed  Google Scholar 

Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W et al (2021) Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precision Oncol 5(1):72

Article  CAS  Google Scholar 

Gollub MJ, Blazic I, Felder S, Knezevic A, Gonen M, Garcia-Aguilar J et al (2019) Value of adding dynamic contrast-enhanced MRI visual assessment to conventional MRI and clinical assessment in the diagnosis of complete tumour response to chemoradiotherapy for rectal cancer. Eur Radiol 29(3):1104–1113

Article  PubMed  Google Scholar 

Park SH, Cho SH, Choi SH, Jang JK, Kim MJ, Kim SH et al (2020) MRI assessment of complete response to preoperative chemoradiation therapy for rectal cancer: 2020 guide for practice from the korean society of abdominal radiology. Korean J Radiol 21(7):812–828

Article  PubMed  PubMed Central  Google Scholar 

Schurink NW, van Kranen SR, Roberti S, van Griethuysen JJM, Bogveradze N, Castagnoli F et al (2022) Sources of variation in multicenter rectal MRI data and their effect on radiomics feature reproducibility. Eur Radiol 32(3):1506–1516

Article  PubMed  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures. They Are Data Radiol 278(2):563–577

Google Scholar 

Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 299(2):E256

Article  PubMed  Google Scholar 

Jia LL, Zheng QY, Tian JH, He DL, Zhao JX, Zhao LP et al (2022) Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: a systematic review and meta-analysis. Front Oncol 12:1026216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286(3):800–809

Article  PubMed  Google Scholar 

Park SH, Kressel HY (2018) Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci 33(22):e152

Article  PubMed  PubMed Central  Google Scholar 

Kirienko M, Sollini M, Ninatti G, Loiacono D, Giacomello E, Gozzi N et al (2021) Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using AI. Eur J Nucl Med Mol Imaging 48(12):3791–3804

Article  PubMed  PubMed Central  Google Scholar 

Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X et al (2020) Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat Commun 11(1):5088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N et al (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566(7743):195–204

Article  CAS  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clin Res ed) 372:n71

Google Scholar 

Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M, Golub R et al (2021) A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med 27(10):1663–1665

Article  CAS  PubMed  Google Scholar 

Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

Article  PubMed  Google Scholar 

Yang B, Mallett S, Takwoingi Y, Davenport CF, Hyde CJ, Whiting PF et al (2021) QUADAS-C: a tool for assessing risk of bias in comparative diagnostic accuracy studies. Ann Intern Med 174(11):1592–1599

Article  PubMed  Google Scholar 

Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ (Clin Res ed) 326(7382):219

Article  Google Scholar 

Abbaspour S, Abdollahi H, Arabalibeik H, Barahman M, Arefpour AM, Fadavi P, Ay M, Mahdavi SR (2022) Endorectal ultrasound radiomics in locally advanced rectal cancer patients: despeckling and radiotherapy response prediction using machine learning. Abdom Radiol 47(11):3645–3659

Article  Google Scholar 

Antunes JT, Ofshteyn A, Bera K, Wang EY, Brady JT, Willis JE et al (2020) Radiomic features of primary rectal cancers on baseline T-2-weighted MRI are associated with pathologic complete response to neoadjuvant chemoradiation: a multisite study. J Magn Reson Imaging 52(5):1531–1541

Article  PubMed  PubMed Central  Google Scholar 

Bibault JE, Giraud P, Housset M, Durdux C, Taieb J, Berger A et al (2018) Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep 8(1):12611

Article  PubMed  PubMed Central  Google Scholar 

Boldrini L, Lenkowicz J, Orlandini LC, Yin G, Cusumano D, Chiloiro G et al (2022) Applicability of a pathological complete response magnetic resonance-based radiomics model for locally advanced rectal cancer in intercontinental cohort. Radiat Oncol (London, England) 17(1):78

Article  Google Scholar 

Bordron A, Rio E, Badic B, Miranda O, Pradier O, Hatt M, Visvikis D, Lucia F, Schick U, Bourbonne V (2022) External validation of a radiomics model for the prediction of complete response to neoadjuvant chemoradiotherapy in rectal cancer. Cancers 14(4):1079

Article  PubMed  PubMed Central  Google Scholar 

Bulens P, Couwenberg A, Intven M, Debucquoy A, Vandecaveye V, Van Cutsem E et al (2020) Predicting the tumor response to chemoradiotherapy for rectal cancer: model development and external validation using MRI radiomics. Radiother Oncol 142:246–252

Article  CAS  PubMed  Google Scholar 

Cheng Y, Luo Y, Hu Y, Zhang Z, Wang X, Yu Q et al (2021) Multiparametric MRI-based radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Abdom Radiol (New York) 46(11):5072–5085

Article  Google Scholar 

Chiloiro G, Cusumano D, Romano A, Boldrini L, Nicolì G, Votta C, Tran HE, Barbaro B, Carano D, Valentini V, Gambacorta MA (2023) Delta radiomic analysis of mesorectum to predict treatment response and prognosis in locally advanced rectal cancer. Cancers 15(12):3082

Article  PubMed  PubMed Central  Google Scholar 

Cui Y, Yang X, Shi Z, Yang Z, Du X, Zhao Z et al (2019) Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol 29(3):1211–1220

Article  PubMed  Google Scholar 

Feng L, Liu Z, Li C, Li Z, Lou X, Shao L et al (2022) Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Lancet Digital health 4(1):e8–e17

Article  CAS  PubMed  Google Scholar 

Ferrari R, Mancini-Terracciano C, Voena C, Rengo M, Zerunian M, Ciardiello A et al (2019) MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Eur J Radiol 118:1–9

Article  CAS  PubMed  Google Scholar 

Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M et al (2018) MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology 287(3):833–843

Article  PubMed  Google Scholar 

Horvat N, Veeraraghavan H, Nahas CSR, Bates DDB, Ferreira FR, Zheng J et al (2022) Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: an external validation study. Abdom Radiol (New York) 47(8):2770–2782

Article  Google Scholar 

Jang BS, Lim YJ, Song C, Jeon SH, Lee KW, Kang SB et al (2021) Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging. Radiother Oncol: J Eur Soc Ther Radiol Oncol 161:183–190

Article  Google Scholar 

Jayaprakasam VS, Paroder V, Gibbs P, Bajwa R, Gangai N, Sosa RE et al (2022) MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer. Eur Radiol 32(2):971–980

Article 

留言 (0)

沒有登入
gif