Dursunoglu N, Dursunoglu D. Do we neglect women with sleep apnea? Maturitas. 2007;56(3):332–4.
Peppard PE, Young T, Barnet JH, et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.
Article PubMed PubMed Central Google Scholar
Franklin KA, Sahlin C, Stenlund H, et al. Sleep apnoea is a common occurrence in females. Eur Respir J. 2013;41(3):610–5.
Heinzer R, Vat S, Marques-Vidal P, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3(4):310–8.
Article CAS PubMed PubMed Central Google Scholar
Won C, Guilleminault C. Gender differences in sleep disordered breathing: implications for therapy. Expert Rev Respir Med. 2015;9(2):221–31.
Article CAS PubMed Google Scholar
Fabbrini M, AricA I, Tramonti F, et al. Sleep disorders in menopause: results from an Italian multicentric study. Arch Ital Biol. 2015;153(2–3):204–13.
Netzer NC, Eliasson AH, Strohl KP. Women with sleep apnea have lower levels of sex hormones. Sleep Breath. 2003;7(1):25–9.
Wesstrom J, Ulfberg J, Nilsson S. Sleep apnea and hormone replacement therapy: a pilot study and a literature review. Acta Obstet Gynecol Scand. 2005;84(1):54–7.
Cori JM, O’Donoghue FJ, Jordan AS. Sleeping tongue: current perspectives of genioglossus control in healthy individuals and patients with obstructive sleep apnea. Nat Sci Sleep. 2018;10:169–79.
Article PubMed PubMed Central Google Scholar
BuSha BF, Strobel RJ, England SJ. The length-force relationship of the human genioglossus in patients with obstructive sleep apnea. Respir Physiol Neurobiol. 2002;130(2):161–8.
Brandes IF, Zuperku EJ, Dean C, et al. Retrograde labeling reveals extensive distribution of genioglossal motoneurons possessing 5-HT2A receptors throughout the hypoglossal nucleus of adult dogs. Brain Res. 2007;1132(1):110–9.
Article CAS PubMed Google Scholar
Jin XT, Cui N, Zhong W, et al. Pre- and postsynaptic modulations of hypoglossal motoneurons by alpha-adrenoceptor activation in wild-type and Mecp2(-/Y) mice. Am J Physiol Cell Physiol. 2013;305(10):C1080–90.
Article CAS PubMed PubMed Central Google Scholar
Sánchez MG, Estrada-Camarena E, Bélanger N, et al. Estradiol modulation of cortical, striatal and raphe nucleus 5-HT1A and 5-HT2A receptors of female hemiparkinsonian monkeys after long-term ovariectomy. Neuropharmacology. 2011;60(4):642–52.
Park YM, Kanaley JA, Padilla J, et al. Effects of intrinsic aerobic capacity and ovariectomy on voluntary wheel running and nucleus accumbens dopamine receptor gene expression. Physiol Behav. 2016;164(Pt A):383–9.
Article CAS PubMed PubMed Central Google Scholar
ThyagaRajan S, Hima L, Pratap UP, et al. Estrogen-induced neuroimmunomodulation as facilitator of and barrier to reproductive aging in brain and lymphoid organs. J Chem Neuroanat. 2019;95:6–12.
Article CAS PubMed Google Scholar
Scharfman HE, MacLusky NJ. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol. 2006;27(4):415–35.
Article CAS PubMed PubMed Central Google Scholar
De Paul AL, Pons P, Aoki A, et al. Heterogeneity of pituitary lactotrophs: immunocytochemical identification of functional subtypes. Acta Histochem. 1997;99(3):277–89.
El-Khatib YA, Sayed RH, Sallam NA, et al. 17β-Estradiol augments the neuroprotective effect of agomelatine in depressive–and anxiety-like behaviors in ovariectomized rats. Psychopharmacology. 2020;237(9):2873–86.
Article CAS PubMed Google Scholar
Sun BC, Liu L, Yang L, et al. Effect of estrogen on genioglossus and hypoglossal nucleus of female rats. Shanghai Kou Qiang Yi Xue. 2017;26(2):146–50.
Wang W, Cui G, Jin B, et al. Estradiol Valerate and Remifemin ameliorate ovariectomy-induced decrease in a serotonin dorsal raphe-preoptic hypothalamus pathway in rats. Ann Anat. 2016;208:31–9.
Wang W, Bai W, Cui G, et al. Effects of estradiol valerate and remifemin on norepinephrine signaling in the brain of ovariectomized rats. Neuroendocrinology. 2015;101(2):120–32.
Article CAS PubMed Google Scholar
Zhang J, Bai W, Wang W, et al. Mechanisms underlying alterations in norepinephrine levels in the locus coeruleus of ovariectomized rats: Modulation by estradiol valerate and black cohosh. Neuroscience. 2017;354:110–21.
Article CAS PubMed Google Scholar
Bassani TB, Bartolomeo CS, Oliveira RB, et al. Progestogen-mediated neuroprotection in central nervous system disorders. Neuroendocrinology. 2023;113(1):14–35.
Article CAS PubMed Google Scholar
Wang W, Salvaterra PM, Loera S, et al. Brain-derived neurotrophic factor spares choline acetyltransferase mRNA following axotomy of motor neurons in vivo. J Neurosci Res. 1997;47(2):134–43.
Article CAS PubMed Google Scholar
Rind HB, Butowt R, von Bartheld CS. Synaptic targeting of retrogradely transported trophic factors in motoneurons: comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin. J Neurosci. 2005;25(3):539–49.
Article CAS PubMed PubMed Central Google Scholar
Schaser AJ, Stang K, Connor NP, et al. The effect of age and tongue exercise on BDNF and TrkB in the hypoglossal nucleus of rats. Behav Brain Res. 2012;226(1):235–41.
Article CAS PubMed Google Scholar
Chan CB, Ye K. Sex differences in brain-derived neurotrophic factor signaling and functions. J Neurosci Res. 2017;95(1–2):328–35.
Article CAS PubMed PubMed Central Google Scholar
Wu L, Dang Y, Liang LX, et al. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae. Chemosphere. 2022;297: 134234.
Article CAS PubMed Google Scholar
Scotton E, Colombo R, Reis JC, et al. BDNF prevents central oxidative damage in a chronic unpredictable mild stress model: The possible role of PRDX-1 in anhedonic behavior. Behav Brain Res. 2020;378: 112245.
Article CAS PubMed Google Scholar
Wilkerson JE, Mitchell GS. Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation. Exp Neurol. 2009;217(1):116–23.
Article CAS PubMed PubMed Central Google Scholar
Remondelli P, Renna M. The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front Mol Neurosci. 2017;10:187.
Article PubMed PubMed Central Google Scholar
Jóźwiak-Bębenista M, Sokołowska P, Siatkowska M, et al. The importance of endoplasmic reticulum stress as a novel antidepressant drug target and its potential impact on CNS disorders. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14040846.
Article PubMed PubMed Central Google Scholar
Uvarov AV, Mesaeli N. Enhanced ubiquitin-proteasome activity in calreticulin deficient cells: a compensatory mechanism for cell survival. Biochim Biophys Acta. 2008;1783(6):1237–47.
Article CAS PubMed Google Scholar
Coe H, Bedard K, Groenendyk J, et al. Endoplasmic reticulum stress in the absence of calnexin. Cell Stress Chaperones. 2008;13(4):497–507.
Article CAS PubMed PubMed Central Google Scholar
Nakamura K, Bossy-Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol. 2000;150(4):731–40.
留言 (0)