Additional renoprotective effect of the SGLT2 inhibitor dapagliflozin in a patient with ADPKD receiving tolvaptan treatment

Müller R-U, Messchendorp AL, Birn H, Capasso G, Cornec-Le Gall E, Devuyst O, et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA working group on inherited kidney disorders, the European rare kidney disease reference network and polycystic kidney disease international. Nephrol Dial Transplant. 2022;37:825–39.

Article  PubMed  Google Scholar 

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

Article  PubMed  Google Scholar 

Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

Article  PubMed  Google Scholar 

The EMPA-KIDNEY Collaborative Group, Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023;388:117–27.

Article  Google Scholar 

Afsar B, Afsar RE, Demiray A, Altay S, Korkmaz H, Yildiz A, et al. Sodium–glucose cotransporter inhibition in polycystic kidney disease: fact or fiction. Clin Kidney J. 2022;15:1275–83.

Article  PubMed  PubMed Central  Google Scholar 

Patel DM, Dahl NK. Examining the role of novel CKD therapies for the ADPKD patient. Kidney360. 2021;2:1036–41.

Article  PubMed  PubMed Central  Google Scholar 

Morioka F, Nakatani S, Uedono H, Tsuda A, Mori K, Emoto M. Short-term dapagliflozin administration in autosomal dominant polycystic kidney disease-a retrospective single-arm case series study. J Clin Med Res. 2023. https://doi.org/10.3390/jcm12196341.

Article  Google Scholar 

Nakatani S, Morioka F, Uedono H, Tsuda A, Mori K, Emoto M. Dapagliflozin administration for 1 year promoted kidney enlargement in patient with ADPKD. CEN Case Rep. 2023. https://doi.org/10.1007/s13730-023-00840-4.

Article  PubMed  Google Scholar 

Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26:160.

Article  PubMed  Google Scholar 

Schrier RW, Abebe KZ, Perrone RD, Torres VE, Braun WE, Steinman TI, et al. Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371:2255–66.

Article  PubMed  PubMed Central  Google Scholar 

Yu ASL, Shen C, Landsittel DP, Grantham JJ, Cook LT, Torres VE, et al. Long-term trajectory of kidney function in autosomal-dominant polycystic kidney disease. Kidney Int. 2019;95:1253–61.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19:102–8.

Article  PubMed  PubMed Central  Google Scholar 

Meijer E, Bakker SJL, van der Jagt EJ, Navis G, de Jong PE, Struck J, et al. Copeptin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6:361.

Article  PubMed  PubMed Central  Google Scholar 

Gansevoort R, van Gastel M, Chapman A, Copeptin BJ. A surrogate for vasopressin, predicts disease progression and tolvaptan treatment efficacy in ADPKD. results of the TEMPO 3 4 trial. J Am Soc Nephrol. 2016;27:34A.

Google Scholar 

Gansevoort RT, van Gastel MDA, Chapman AB, Blais JD, Czerwiec FS, Higashihara E, et al. Plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. Kidney Int. 2019;96:159–69.

Article  PubMed  PubMed Central  Google Scholar 

Masuda T, Ohara K, Vallon V, Nagata D. SGLT2 inhibitor and loop diuretic induce different vasopressin and fluid homeostatic responses in nondiabetic rats. Am J Physiol Renal Physiol. 2022;323:F361–9.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Zhang S, Liu Y, Spichtig D, Kapoor S, Koepsell H, et al. Targeting of sodium–glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in han:SPRD rats. Kidney Int. 2013;84:962–8.

Article  PubMed  Google Scholar 

Kapoor S, Rodriguez D, Riwanto M, Edenhofer I, Segerer S, Mitchell K, et al. Effect of sodium-glucose cotransport inhibition on polycystic kidney disease progression in PCK rats. PLoS One. 2015;10: e0125603.

Article  PubMed  PubMed Central  Google Scholar 

Palmer BF, Clegg DJ. Kidney-protective effects of SGLT2 inhibitors. Clin J Am Soc Nephrol. 2023;18:279–89.

Article  PubMed  Google Scholar 

Hopp K, Catenacci VA, Dwivedi N, Kline TL, Wang W, You Z, et al. Weight loss and cystic disease progression in autosomal dominant polycystic kidney disease. iScience. 2022;25:103697.

Article  ADS  PubMed  Google Scholar 

Nowak KL, You Z, Gitomer B, Brosnahan G, Torres VE, Chapman AB, et al. Overweight and obesity are predictors of progression in early autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2018;29:571–8.

Article  PubMed  Google Scholar 

Ushio Y, Kataoka H, Sato M, Manabe S, Watanabe S, Akihisa T, et al. Association between anemia and renal prognosis in autosomal dominant polycystic kidney disease: a retrospective study. Clin Exp Nephrol. 2020;24:500–8.

Article  PubMed  Google Scholar 

Packer M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: modulation by SGLT2 inhibitors and hypoxia mimetics. Am J Kidney Dis. 2021;77:280–6.

Article  PubMed  Google Scholar 

Packer M. Alleviation of anemia by SGLT2 inhibitors in patients with CKD: mechanisms and results of long-term placebo-controlled trials. Clin J Am Soc Nephrol. 2023. https://doi.org/10.2215/CJN.0000000000000362.

Article  PubMed  Google Scholar 

Kraus A, Peters DJM, Klanke B, Weidemann A, Willam C, Schley G, et al. HIF-1α promotes cyst progression in a mouse model of autosomal dominant polycystic kidney disease. Kidney Int. 2018;94:887–99.

Article  PubMed  Google Scholar 

Srivastava A, Kaze AD, McMullan CJ, Isakova T, Waikar SS. Uric acid and the risks of kidney failure and death in individuals with CKD. Am J Kidney Dis. 2018;71:362–70.

Article  PubMed  Google Scholar 

Brosnahan GM, You Z, Wang W, Gitomer BY, Chonchol M. Serum uric acid and progression of autosomal dominant polycystic kidney disease: results from the HALT PKD trials. Curr Hypertens Rev. 2021;17:228–37.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif