Estrogen promotes fetal skeletal muscle mitochondrial distribution and ATP synthase activity important for insulin sensitivity in offspring

A. Maniu, G.W. Aberdeen, T.J. Lynch, J.L. Nadler, S.O. Kim, M.J. Quon, G.J. Pepe, E.D. Albrecht, Estrogen deprivation in primate pregnancy leads to insulin resistance in offspring. J. Endocrinol. 230, 171–183 (2016). https://doi.org/10.1530/JOE-15-0530

Article  CAS  PubMed  PubMed Central  Google Scholar 

G.J. Pepe, A. Maniu, G. Aberdeen, T.J. Lynch, S.O. Kim, J. Nadler, E.D. Albrecht, Insulin resistance elicited in postpubertal primate offspring deprived of estrogen in utero. Endocrine 54, 788–797 (2016). https://doi.org/10.1007/s12020-016-1145-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

E.D. Albrecht, G.W. Aberdeen, J.S. Babischkin, S.J. Prior, T. Lynch, I.A. Baranyk, G.J. Pepe, Estrogen promotes micro-vascularization in the fetus and thus vascular function and insulin sensitivity in offspring. Endocrinology 163, 1–12 (2022). https://doi.org/10.1210/endocr/bqac037

Article  CAS  Google Scholar 

S.O. Kim, G. Aberdeen, T.J. Lynch, E.D. Albrecht, G.J. Pepe, Adipose and liver function in primate offspring with insulin resistance induced by estrogen deprivation in utero. Endocrinol. Diabetes Metab J. 1, 1–7 (2017)

Google Scholar 

R.A. DeFronzo, E. Jacot, E. Jequier, E. Maeder, J. Wahren, J.P. Felber, The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981). https://doi.org/10.2337/diab.30.12.1000

Article  CAS  PubMed  Google Scholar 

M.A. Abdul-Ghani, R.A. DeFronzo, Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010, 476279 (2010). https://doi.org/10.1155/2010/476279

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.O. Kim, E.D. Albrecht, G.J. Pepe, Estrogen promotes fetal skeletal muscle myofiber development important for insulin sensitivity in offspring. Endocrine 78, 32–41 (2022). https://doi.org/10.1007/s12020-022-03108-6

Article  CAS  PubMed  Google Scholar 

M.V. Patrushev, I.O. Mazunin, E.N. Vinogradova, P.A. Kamenski, Mitochondrial fission and fusion. Biochemistry 80, 1457–1464 (2015). https://doi.org/10.1134/S0006297915110061

Article  CAS  PubMed  Google Scholar 

K.N. Belosludtsev, N.V. Belosludtseva, M.V. Dubinin, Diabetes mellitus, mitochondrial dysfunction and Ca(2+)-dependent permeability transition pore. Int. J. Mol. Sci. 21, 6559 (2020). https://doi.org/10.3390/ijms21186559

Article  CAS  PubMed  PubMed Central  Google Scholar 

D.E. Kelley, H.E. Jing, E.V. Menshikova, V. Ritov, Dysfunction of mitochondria in human skeletal muscle in Type 2 diabetes. Diabetes 51, 2944–2950 (2002). https://doi.org/10.2337/diabetes.51.10.2944

Article  CAS  PubMed  Google Scholar 

K.F. Petersen, S. Dufour, D. Befroy, R. Garcia, G.I. Shulman, Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664–671 (2004). https://doi.org/10.1056/NEJMoa031314

Article  CAS  PubMed  PubMed Central  Google Scholar 

V.B. Ritov, E.V. Menshikova, K. Azuma, R. Wood, F.G. Toledo, B.H. Goodpaster et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am. J. Physiol. Endocrinol. Metab. 298, E49–E58 (2010). https://doi.org/10.1152/ajpendo.00317.2009

Article  CAS  PubMed  Google Scholar 

L. Heilbronn, S. Gan, N. Turner, L. Campbell, D. Chisholm, Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J. Clin. Endocrinol. Metab. 92, 1467–1473 (2007). https://doi.org/10.1210/jc.2006-2210

Article  CAS  PubMed  Google Scholar 

V.K. Mootha, C.M. Lindgren, K.F. Eriksson, A. Subramanian, S. Sihag, J. Lehar et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003). https://doi.org/10.1038/ng1180

Article  CAS  PubMed  Google Scholar 

J.S. Bhatti, A. Sehrawat, J. Mishra, I.S. Sidhu, U. Navik, N. Khullar et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications; Current therapeutic strategies and future perspectives. Free Radic. Biol. Med. 184, 114–134 (2022). https://doi.org/10.1016/j.freeradbiomed.2022.03.019

Article  CAS  PubMed  Google Scholar 

A. Eirin, A. Lerman, L. Lerman, Mitochondrial injury and dysfunction in hypertension-induced cardiac damage. Eur. Heart J. 35, 3258–3266 (2014). https://doi.org/10.1093/eurheartj/ehu436

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Yoh, K. Ikeda, K. Horie, S. Inoue, Roles of estrogen, estrogen receptors, and estrogen-related receptors in skeletal muscle: Regulation of mitochondrial function. Int. J. Mol. Sci. 24, 1853 (2023). https://doi.org/10.3390/ijms24031853

Article  CAS  PubMed  PubMed Central  Google Scholar 

C.M. Klinge, Estrogenic control of mitochondrial function. Redox Biol. 31, 101435 (2020). https://doi.org/10.1016/j.redox.2020.101435

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Ventura-Clapier, J. Piquereau, V. Veksler, A. Garnier, Estrogens, estrogen receptors effects on cardiac and skeletal muscle mitochondria. Front. Endocrinol. (Lausanne) 10, 557 (2019). https://doi.org/10.3389/fendo.2019.00557

Article  PubMed  Google Scholar 

V. Ribas, B.G. Drew, Z. Zhou, J. Phun et al. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl. Med. 8, 334ra54 (2016). https://doi.org/10.1126/scitranslmed.aad3815

Article  CAS  PubMed  PubMed Central  Google Scholar 

A.L. Hevener, V. Ribas, T.M. Moore, Z. Zhou, The impact of skeletal muscle ERα on mitochondrial function and metabolic health. Endocrinology 161, 1–16 (2020). https://doi.org/10.1210/endocr/bqz017

Article  CAS  Google Scholar 

J.Q. Chen, T.R. Brown, J. Russo, Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochim. Biophys. Acta 1793, 1128–1143 (2009). https://doi.org/10.1016/j.bbamcr.2009.03.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

J.Q. Chen, P.R. Cammarata, C.P. Baines, J.D. Yager, Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim. Biophys. Acta 1793, 1540–1570 (2009). https://doi.org/10.1016/j.bbamcr.2009.06.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

T.L. Liao, C.R. Tzeng, C.L. Yu, Y.P. Wang, S.H. Kao, Estrogen receptor-beta in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis. Ann. N. Y. Acad. Sci. 1350, 52–60 (2015). https://doi.org/10.1111/nyas.12872

Article  CAS  PubMed  Google Scholar 

S.B. Beikoghli Kalkhoran, G. Kararigas, Oestrogenic regulation of mitochondrial dynamics. Int. J. Mol. Sci. 23, 1118 (2022). https://doi.org/10.3390/ijms23031118

Article  CAS  PubMed  PubMed Central  Google Scholar 

A.W. Brandenberger, M.K. Tee, J.Y. Lee, V. Chao, R.B. Jaffe, Tissue distribution of estrogen receptors alpha (ER-α) and beta (ER-β) mRNA in the midgestational human fetus. J. Clin. Endocrinol. Metab. 82, 3509–3512 (1997). https://doi.org/10.1210/jcem.82.10.4400

Article  CAS  PubMed  Google Scholar 

E.D. Albrecht, G.W. Aberdeen, G.J. Pepe, The role of estrogen in the maintenance of primate pregnancy. Am. J. Obstet. Gynecol. 182, 432–438 (2000). https://doi.org/10.1016/s0002-9378(00)70235-3

Article  CAS  PubMed  Google Scholar 

S.L. Archer, Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369, 2236–2251 (2013). https://doi.org/10.1056/NEJMra1215233

Article  CAS  PubMed  Google Scholar 

J.A. Simoneau, D.E. Kelley, Altered skeletal muscle glycolytic and oxidative capacities contribute to insulin resistance in NIDDM. J. Appl. Physiol. 83, 166–171 (1997). https://doi.org/10.1152/jappl.1997.83.1.166

Article  CAS  PubMed  Google Scholar 

R. Liu, P. Jin, L. Yu, Y. Wang, L. Han, T. Shi, X. Li, Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS One 9, e92810 (2014). https://doi.org/10.1371/journal.pone.0092810

Article  CAS  PubMed  PubMed Central  Google Scholar 

K.D. Gerbitz, K. Gempel, D. Brdiczka, Mitochondria and diabetes: genetic, biochemical and clinical implications of the cellular energy circuit. Diabetes 45, 113–126 (1996). https://doi.org/10.2337/diab.45.2.113

Article  CAS  PubMed  Google Scholar 

B. Westermann, Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010). https://doi.org/10.1038/nrm3013

Article  CAS  PubMed 

留言 (0)

沒有登入
gif