Is thyroid function associated with polycystic ovary syndrome? A bidirectional Mendelian randomization study

S. De Leo, S.Y. Lee, L.E. Braverman, Hyperthyroidism. Lancet Lond. Engl. 388(10047), 906–918 (2016). https://doi.org/10.1016/S0140-6736(16)00278-6

Article  CAS  Google Scholar 

P. N. Taylor, D. Albrecht, A. Scholz, G. Gutierrez-Buey, J. H. Lazarus, C. M. Dayan, O. E. Okosieme, Global epidemiology of hyperthyroidism and hypothyroidism. Nature reviews. Endocrinology 14(5), 301–316 (2018). https://doi.org/10.1038/nrendo.2018.18

Article  Google Scholar 

K. Poppe, P. Bisschop, L. Fugazzola, G. Minziori, D. Unuane, A. Weghofer, 2021 European Thyroid Association Guideline on Thyroid Disorders prior to and during Assisted Reproduction. Eur. Thyroid J. 9(6), 281–295 (2021). https://doi.org/10.1159/000512790

Article  CAS  Google Scholar 

J.G. Hollowell, N.W. Staehling, W.D. Flanders et al. Serum TSH, T4, and Thyroid Antibodies in the United States Population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87(2), 489–499 (2002). https://doi.org/10.1210/jcem.87.2.8182

Article  CAS  Google Scholar 

C. Dosiou, Thyroid and Fertility: Recent Advances. Thyroid J. Am. Thyroid Assoc. 30(4), 479–486 (2020). https://doi.org/10.1089/thy.2019.0382

Article  Google Scholar 

K. Poppe, Management of Endocrine Disease: Thyroid and female infertility: more questions than answers?! Eur. J. Endocrinol. 184(4), R123–R135 (2021). https://doi.org/10.1530/EJE-20-1284

Article  CAS  Google Scholar 

M.A. Bedaiwy, M.Y. Abdel-Rahman, J. Tan et al. Clinical, Hormonal, and Metabolic Parameters in Women with Subclinical Hypothyroidism and Polycystic Ovary Syndrome: A Cross-Sectional Study. J. Womens Health 27(5), 659–664 (2018). https://doi.org/10.1089/jwh.2017.6584

Article  Google Scholar 

T.I.M. Korevaar, L. Mínguez-Alarcón, C. Messerlian et al. Association of Thyroid Function and Autoimmunity with Ovarian Reserve in Women Seeking Infertility Care. Thyroid J. Am. Thyroid Assoc. 28(10), 1349–1358 (2018). https://doi.org/10.1089/thy.2017.0582

Article  CAS  Google Scholar 

H.M. Sadeghi, I. Adeli, D. Calina et al. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. Int J. Mol. Sci. 23(2), 583 (2022). https://doi.org/10.3390/ijms23020583

Article  CAS  Google Scholar 

A.H. Balen, G.S. Conway, G. Kaltsas et al. Andrology: Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum. Reprod. 10(8), 2107–2111 (1995). https://doi.org/10.1093/oxfordjournals.humrep.a136243

Article  CAS  Google Scholar 

S. Parveen, S. Das, Homeopathic Treatment in Patients with Polycystic Ovarian Syndrome: A Case Series. Homeopath. J. Fac. Homeopath. 110(3), 186–193 (2021). https://doi.org/10.1055/s-0041-1725039

Article  Google Scholar 

J. Puurunen, T. Piltonen, L. Morin-Papunen, A. Perheentupa, I. Järvelä, A. Ruokonen, J. S. Tapanainen, Unfavorable hormonal, metabolic, and inflammatory alterations persist after menopause in women with PCOS. J. Clin. Endocrinol. Metab. 96(6), 1827–1834 (2011). https://doi.org/10.1210/jc.2011-0039

Article  CAS  Google Scholar 

J. Collée, M. Mawet, L. Tebache, M. Nisolle, G. Brichant, Polycystic ovarian syndrome and infertility: overview and insights of the putative treatmentsGynecological endocrinology: the official journal of the International Society of Gynecological Endocrinology, 37(10), 869–874 (2021). https://doi.org/10.1080/09513590.2021.1958310

Article  CAS  Google Scholar 

H. Teede, A. Deeks, L. Moran, Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC medicine, 8, 41 (2010). https://doi.org/10.1186/1741-7015-8-41

Article  CAS  Google Scholar 

I.M. Gawron, R. Baran, K. Derbisz, R. Jach, Association of Subclinical Hypothyroidism with Present and Absent Anti-Thyroid Antibodies with PCOS Phenotypes and Metabolic Profile. J. Clin. Med. 11(6), 1547 (2022). https://doi.org/10.3390/jcm11061547

Article  CAS  Google Scholar 

A. Arduc, B. Aycicek Dogan, S. Bilmez et al. High prevalence of Hashimoto’s thyroiditis in patients with polycystic ovary syndrome: does the imbalance between estradiol and progesterone play a role? Endocr. Res. 40(4), 204–210 (2015). https://doi.org/10.3109/07435800.2015.1015730

Article  CAS  Google Scholar 

C.W. Ho, H.H. Chen, M.C. Hsieh et al. Increased Risk of Polycystic Ovary Syndrome and It’s Comorbidities in Women with Autoimmune Thyroid Disease. Int J. Environ. Res. Public Health 17(7), 2422 (2020). https://doi.org/10.3390/ijerph17072422

Article  Google Scholar 

M. Sharma, A. Modi, M. Goyal, P. Sharma, P. Purohit, Anti-thyroid antibodies and the gonadotrophins profile (LH/FSH) in euthyroid polycystic ovarian syndrome women. Acta Endocrinol. Buchar. Rom. 18(1), 79–85 (2022). https://doi.org/10.4183/aeb.2022.79

Article  CAS  Google Scholar 

C. De Geyter, L. Matt, I. De Geyter, R. Moffat, C. Meier, In infertile women with subclinical hypothyroidism, with or without thyroid peroxidase antibodies, serum TSH during pregnancy follows preconception values and thyroid hormones remain stable. Hum. Reprod. Open 2023(4), hoad038 (2023). https://doi.org/10.1093/hropen/hoad038

Article  Google Scholar 

C.A. Emdin, A.V. Khera, S. Kathiresan, Mendelian Randomization. JAMA 318(19), 1925–1926 (2017). https://doi.org/10.1001/jama.2017.17219

Article  Google Scholar 

A. Teumer, L. Chaker, S. Groeneweg et al. Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat. Commun. 9(1), 4455 (2018). https://doi.org/10.1038/s41467-018-06356-1

Article  ADS  CAS  Google Scholar 

F. Day, T. Karaderi, M.R. Jones et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 14(12), e1007813 (2018). https://doi.org/10.1371/journal.pgen.1007813

Article  CAS  Google Scholar 

M. I. Kurki, J. Karjalainen, P. Palta, T. P. Sipilä, K. Kristiansson, K. M. Donner, M. P. Reeve, H. Laivuori, M. Aavikko, M. A. Kaunisto, A. Loukola, E. Lahtela, H. Mattsson, P. Laiho, P. Della Briotta Parolo, A. A. Lehisto, M. Kanai, N. Mars, J. Rämö, T. Kiiskinen, … A. Palotie, FinnGen provides genetic insights from a well-phenotyped isolated population. Nature, 613(7944), 508–518 (2023). https://doi.org/10.1038/s41586-022-05473-8

J.S. Tyrmi, R.K. Arffman, N. Pujol-Gualdo et al. Leveraging Northern European population history: novel low-frequency variants for polycystic ovary syndrome. Hum. Reprod. Oxf. Engl. 37(2), 352–365 (2022). https://doi.org/10.1093/humrep/deab250

Article  Google Scholar 

J. M. Fussey, R. N. Beaumont, A. R. Wood, B. Vaidya, J. Smith, J. Tyrrell, Does Obesity Cause Thyroid Cancer? A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 105(7), e2398–e2407 (2020). https://doi.org/10.1210/clinem/dgaa250

Article  Google Scholar 

GIANT Consortium, P. Wojciechowski, A. Lipowska et al. Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome: a systematic review and meta-analysis. Diabetologia 55(10), 2636–2645 (2012). https://doi.org/10.1007/s00125-012-2638-6

Article  Google Scholar 

C. J. Glueck, N. Goldenberg, Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism: clinical and experimental, 92, 108–120 (2019). https://doi.org/10.1016/j.metabol.2018.11.002

Article  CAS  Google Scholar 

Q. Liu, Z. Zhu, P. Kraft, Q. Deng, E. Stener-Victorin, X. Jiang, Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: a large-scale genome-wide cross-trait analysis. BMC medicine, 20(1), 66 (2022). https://doi.org/10.1186/s12916-022-02238-y

Article  CAS  Google Scholar 

C. Yao, Y. Zhang, P. Lu et al. Exploring the bidirectional relationship between pain and mental disorders: a comprehensive Mendelian randomization study. J. Headache Pain. 24(1), 82 (2023). https://doi.org/10.1186/s10194-023-01612-2

Article  Google Scholar 

L. Chen, H. Yang, H. Li, C. He, L. Yang, G. Lv, Insights into modifiable risk factors of cholelithiasis: A Mendelian randomization study. Hepatology (Baltimore, Md.) 75(4), 785–796. (2022). https://doi.org/10.1002/hep.32183

Article  CAS  Google Scholar 

Y. Guo, Y. Dai, H. Yu, S. Zhao, D.C. Samuels, Y. Shyr, Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. Genomics 109(2), 83–90 (2017). https://doi.org/10.1016/j.ygeno.2017.01.005

Article  CAS  Google Scholar 

S. Burgess, A. Butterworth, S.G. Thompson, Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 37(7), 658–665 (2013). https://doi.org/10.1002/gepi.21758

Article  Google Scholar 

J. Bowden, M. F. Del Greco, C. Minelli, G. Davey Smith, N. A. Sheehan, J. R. Thompson, Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45(6), 1961–1974 (2016). https://doi.org/10.1093/ije/dyw220

Article  Google Scholar 

J. Bowden, G. Davey Smith, S. Burgess, Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J. Epidemiol. 44(2), 512–525 (2015). https://doi.org/10.1093/ije/dyv080

Article  Google Scholar 

L. Xiao, S. Liu, Y. Wu et al. The interactions between host genome and gut microbiome increase the risk of psychiatric disorders: Mendelian randomization and biological annotation. Brain Behav. Immun. 113, 389–400 (2023). https://doi.org/10.1016/j.bbi.2023.08.003

Article  CAS  Google Scholar 

D.A. Lawlor, L. Benfield, J. Logue et al. Association between general and central adiposity in childhood, and change in these, with cardiovascular risk factors in adolescence: prospective cohort study. BMJ 341, c6224 (2010). https://doi.org/10.1136/bmj.c6224

Article  Google Scholar 

F.P. Hartwig, N.M. Davies, G. Hemani, G. Davey Smith, Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J. Epidemiol. 45(6), 1717–1726 (2016). https://doi.org/10.1093/ije/dyx028

Article  Google Scholar 

M. Verbanck, C.Y. Chen, B. Neale, R. Do, Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet 50(5), 693–698 (2018). https://doi.org/10.1038/s41588-018-0099-7

Article  CAS  Google Scholar 

S. Burgess, G. Davey Smith, N.M. Davies et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res 4, 186 (2019). https://doi.org/10.12688/wellcomeopenres.15555.2

Article  Google Scholar 

S. Burgess, G. Davey Smith, N.M. Davies et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 4, 186 (2023). https://doi.org/10.12688/wellcomeopenres.15555.3

留言 (0)

沒有登入
gif