A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging

Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S (2020) Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. J Mater 13(20):4644. https://doi.org/10.3390/ma13204644

Article  ADS  CAS  Google Scholar 

Alterary SS, AlKhamees A (2021) Synthesis, surface modifification, and characterization of Fe3O4@SiO2 core@shell nanostructure. Green Process Synth 10:384–391. https://doi.org/10.1515/gps-2021-0031

Article  CAS  Google Scholar 

Amara D, Grinblat J, Margel S (2012) Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J Mater Chem 22(5):2188–2195

Article  CAS  Google Scholar 

Attallah OA, Al-Ghobashy MA, Nebsen M, Salem MY (2017) Adsorptive removal of fluoroquinolones from water by pectin-functionalized magnetic nanoparticles: process optimization using a spectrofluorimetric assay. ACS Sustain Chem Eng 5(1):133–145

Article  CAS  Google Scholar 

Benhammada A, Kesraoui M, Tarchoun AF, Chelouche S, Mezroua A (2020) Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. J Thermochim Acta 686:178570. https://doi.org/10.1016/j.tca.2020.178570

Article  CAS  Google Scholar 

Benitez MJ, Mishra D, Szary P, Badini Confalonieri GA, Feyen M, Lu AH, Agudo L, Eggeler G, Petracic O, Zabel H (2011) Structural and magnetic characterization of self-assembled iron oxide nanoparticle arrays. J Phys Condens Matter 23(12):126003

Article  ADS  CAS  PubMed  Google Scholar 

Boote E, Fent G, Kattumuri V, Casteel S, Katti K, Chanda N, Churchill R (2010) Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using x-ray computed tomography. Acad Radiol 17(4):410–417

Article  PubMed  PubMed Central  Google Scholar 

Caballero-Calero O, Ares JR, Martín-González M (2021) Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth. Adv Sustain Syst 5(11):2100095

Article  CAS  Google Scholar 

Cabrera L, Gutierrez S, Menéndez N, del Puerto-Morales M (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. J Electrochim Acta 53(8):3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006

Article  CAS  Google Scholar 

Chaki SH, Malek TJ, Chaudhary MD, Tailor JP, Deshpande MP (2015) Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv Nat Sci J Nanosci Nanotechnol 6:035009. https://doi.org/10.1088/2043-6262/6/3/035009

Article  ADS  CAS  Google Scholar 

Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M (2022) Ultrasmall superparamagnetic iron oxide nanoparticles: a next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14(1):e1740

Article  CAS  PubMed  Google Scholar 

Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. J Nanomed 10(2):321–341. https://doi.org/10.2217/nnm.14.171

Article  CAS  Google Scholar 

Dogan N, Dogan OM, Irfan M, Ozel F, Kamzin AS, SemenovI VG, Buryanenko V (2022) Manganese doped-iron oxide nanoparticles and their potential as tracer agents for magnetic particle imaging (MPI). J Magn Magn Mater 561:169654. https://doi.org/10.1016/j.jmmm.2022.169654

Article  CAS  Google Scholar 

Dong P, Zhang T, Xiang H, Xu X, Lv Y, Wang Y, Lu C (2021) Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. J Mater Chem B 9(4):958–968

Article  CAS  PubMed  Google Scholar 

Dulinska-Litewka J, Lazarczyk A, Halubiec P, Szafranski O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. J Mater 12:617. https://doi.org/10.3390/ma12040617

Article  ADS  CAS  Google Scholar 

Eid MM (2015) Spectroscopic characterization of iron oxide nanoparticles functionalized with chitosan biosynthesis by a clean one pot method. Middle East J Appl Sci 05(05):18–22

Google Scholar 

Fu J, Guo J, Qin A et al (2020) Bismuth chelate as a contrast agent for X-ray computedtomography. J Nanobiotechnol 18:110. https://doi.org/10.1186/s12951-020-00669-4

Article  CAS  Google Scholar 

Galli M, Guerrini A, Cauteruccio S, Thakare P, Dova D, Orsini F, Arosio P, Carrara C, Sangregorio C, Lascialfari A, Maggioni D, Licandro E (2017) Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. J RSC Adv 7:15500–15512. https://doi.org/10.1039/C7RA00519A

Article  ADS  CAS  Google Scholar 

Ganapathe LS, Mohamed MA, Yunus RM, Berhanuddin DD (2020) Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. J Magnetochem 6(1):68. https://doi.org/10.3390/magnetochemistry6040068

Article  CAS  Google Scholar 

Grab T, Gross U, Franzke U, Buschmann MH (2014) Operation performance of thermosyphons employing titania and gold nanofluids. Int J Therm Sci 86:352–364

Article  CAS  Google Scholar 

Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

Article  CAS  PubMed  Google Scholar 

Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB (2023) Bio-inspired nanomaterials for micro/nanodevices: a new era in biomedical applications. Micromachines 14(9):1786

Article  PubMed  PubMed Central  Google Scholar 

Hidayah AN, Kamyar S, Chan AE, Chuah AL (2017) A facile and green synthetic approach toward fabrication of starch-stabilized magnetite nanoparticles. J Chin Chem Lett 28(7):1590–1596. https://doi.org/10.1016/j.cclet.2017.02.015

Article  CAS  Google Scholar 

Karimzadeh I, Aghazadeh M, Doroudi T, Ganjali MR, Kolivand PH (2017) Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: a facile and scalable preparation route based on the cathodic electrochemical deposition method. J Adv Phys Chem. https://doi.org/10.1155/2017/9437487

Article  Google Scholar 

Keshtkar M, Shahbazi-Gahrouei D, Mahmoudabadi A (2020) Synthesis an application of Fe3O4@Au compositenanoparticles as magnetic resonance/computed tomography dual-modality contrast agent. J Med Signals Sens 10(3):201–207. https://doi.org/10.4103/jmss.JMSS_55_19

Article  PubMed  PubMed Central  Google Scholar 

Khanafer K, Vafai K (2006) The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf 42(10):939–953

Article  ADS  CAS  Google Scholar 

Kharey P, Goel M, Husain Z, Gupta R, Sharma D, Manikandan M, Gupta S (2023) Green synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic resonance imaging, hyperthermia and photothermal therapeutic applications. Mater Chem Phys 293:126859

Article  CAS  Google Scholar 

Kim E-J, Lee H, Yeom A, Hong KS (2016) In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. J Biotechnol Bioproc E 21:567–572. https://doi.org/10.1007/s12257-016-0251-0

Article  CAS  Google Scholar 

Koc MM, Aslan N, Kao AP, Barber AH (2019) Evaluation of X-ray tomography contrast agents: a review of production, protocols, and biological applications. J Microscopy Res Technique 82(6):812–848. https://doi.org/10.1002/jemt.23225

Article  Google Scholar 

Kumar V, Gautam G, Singh A, Singh V, Mohan S, Mohan A (2022) Tribological behaviour of ZA/ZrB2 in situ composites using response surface methodology and artificial neural network. Surf Topogr Metrol Prop 10(4):045001

Article  ADS  CAS  Google Scholar 

Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. J Chem Rev 108(6):2064–2110. https://doi.org/10.1021/cr068445e

Article  CAS  Google Scholar 

Li Q, Kartikowati CW, Horie S et al (2017) Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. J Sci Rep 7:9894. https://doi.org/10.1038/s41598-017-09897-5

Article  ADS  CAS  Google Scholar 

Loizou K, Mourdikoudis S, Sergides A, Besenhard MO, Sarafidi C, Higashimine K, Kalogirou O, Maenosono S, Thanh NTK, Gavriilidis A (2020) Rapid millifluidic synthesis of stable high magnetic moment FexCy nanoparticles for hyperthermia. J ACS Appl Mater Interfaces 12(25):28520–32853. https://doi.org/10.1021/acsami.0c06192

Article  CAS  Google Scholar 

Masrour R, Mounkachi O, El Moussaoui H et al (2013) Physical proprieties of ferrites nanoparticles. J Superconductivity and Novel Magnetism 26:3443–3447. https://doi.org/10.1007/s10948-013-2186-4

Article  CAS  Google Scholar 

Neuwelt A, Sidhu N, Hu CAA, Mlady G, Eberhardt SC, Sillerud LO (2015) Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol 204(3):W302

Article  PubMed  PubMed Central  Google Scholar 

Parveen S, Misra R, Sahoo SK (2017) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine in cancer. Pan Stanford, NY, pp 47–98

Google Scholar 

Patra JK, Baek K-H (2017) Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J Photochem Photobiol b: Biol S1011–1344(17):30459–30461. https://doi.org/10.1016/j.jphotobiol.2017.05.045

Article  CAS 

留言 (0)

沒有登入
gif