Unlocking potential biomarkers bridging coronary atherosclerosis and pyrimidine metabolism-associated genes through an integrated bioinformatics and machine learning approach

Henein MY, Vancheri S, Bajraktari G, Vancheri F. Coronary Atherosclerosis Imaging. Diagnostics (Basel). 2020;10(2):65.

Article  CAS  Google Scholar 

Gallino A, Aboyans V, Diehm C, Cosentino F, Stricker H, Falk E, Schouten O, Lekakis J, Amann-Vesti B, Siclari F, et al. Non-coronary atherosclerosis. EUR HEART J. 2014;35(17):1112–9.

Article  Google Scholar 

Sato Y, Kawakami R, Sakamoto A, Cornelissen A, Mori M, Kawai K, Ghosh S, Romero ME, Kolodgie FD, Finn AV, et al. Sex Differences in Coronary Atherosclerosis. CURR ATHEROSCLER REP. 2022;24(1):23–32.

Article  Google Scholar 

Al RM, Ahmed AI, Al-Mallah MH. Evaluating coronary atherosclerosis progression among South Asians. Atherosclerosis. 2022;353:30–2.

Article  Google Scholar 

Zhou F, Zhu X, Liu Y, Sun Y, Zhang Y, Cheng D, Wang W. Coronary atherosclerosis and chemotherapy: From bench to bedside. Front Cardiovasc Med. 2023;10:1118002.

Article  CAS  PubMed Central  Google Scholar 

Honigberg MC, Jowell AR. Accelerated Coronary Atherosclerosis After Preeclampsia: Seeing Is Believing. J AM COLL CARDIOL. 2022;79(23):2322–4.

Article  Google Scholar 

Aengevaeren VL, Mosterd A, Sharma S, Prakken N, Mohlenkamp S, Thompson PD, Velthuis BK, Eijsvogels T. Exercise and Coronary Atherosclerosis: Observations, Explanations, Relevance, and Clinical Management. Circulation. 2020;141(16):1338–50.

Article  PubMed Central  Google Scholar 

Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. CELL MOL IMMUNOL. 2020;17(8):807–21.

Article  CAS  PubMed Central  Google Scholar 

Garavito MF, Narvaez-Ortiz HY, Zimmermann BH. Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens and Cellular Development. J GENET GENOMICS. 2015;42(5):195–205.

Article  CAS  Google Scholar 

El KM. Pyrimidine metabolism in schistosomes: A comparison with other parasites and the search for potential chemotherapeutic targets. Comp Biochem Physiol B Biochem Mol Biol. 2017;213:55–80.

Article  Google Scholar 

Pfenninger KH. Plasma membrane expansion: a neuron’s Herculean task. NAT REV NEUROSCI. 2009;10(4):251–61.

Article  CAS  Google Scholar 

Woeller CF, Roztocil E, Hammond C, Feldon SE. TSHR Signaling Stimulates Proliferation Through PI3K/Akt and Induction of miR-146a and miR-155 in Thyroid Eye Disease Orbital Fibroblasts. Invest Ophthalmol Vis Sci. 2019;60(13):4336–45.

Article  CAS  PubMed Central  Google Scholar 

Madera-Salcedo IK, Sanchez-Hernandez BE, Svyryd Y, Esquivel-Velazquez M, Rodriguez-Rodriguez N, Trejo-Zambrano MI, Garcia-Gonzalez HB, Hernandez-Molina G, Mutchinick OM, Alcocer-Varela J, et al. PPP2R2B hypermethylation causes acquired apoptosis deficiency in systemic autoimmune diseases. JCI Insight. 2019;5(16):e126457.

Article  Google Scholar 

Zhu Z, Cao C, Zhang D, Zhang Z, Liu L, Wu D, Sun J. UBE2T-mediated Akt ubiquitination and Akt/beta-catenin activation promotes hepatocellular carcinoma development by increasing pyrimidine metabolism. CELL DEATH DIS. 2022;13(2):154.

Article  CAS  PubMed Central  Google Scholar 

Wu Z, Liu P, Huang B, Deng S, Song Z, Huang X, Yang J, Cheng S. A novel Alzheimer’s disease prognostic signature: identification and analysis of glutamine metabolism genes in immunogenicity and immunotherapy efficacy. Sci Rep. 2023;13(1):6895.

Article  ADS  CAS  PubMed Central  Google Scholar 

Yang Y, Yi X, Cai Y, Zhang Y, Xu Z. Immune-Associated Gene Signatures and Subtypes to Predict the Progression of Atherosclerotic Plaques Based on Machine Learning. FRONT PHARMACOL. 2022;13:865624.

Article  CAS  PubMed Central  Google Scholar 

Sun TH, Wang CC, Wu YL, Hsu KC, Lee TH. Machine learning approaches for biomarker discovery to predict large-artery atherosclerosis. Sci Rep. 2023;13(1):15139.

Article  ADS  CAS  PubMed Central  Google Scholar 

Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. NUCLEIC ACIDS RES. 2022;50(D1):D222–30.

Article  CAS  Google Scholar 

Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC MED GENOMICS. 2009;2:18.

Article  PubMed Central  Google Scholar 

Demchak B, Otasek D, Pico AR, Bader GD, Ono K, Settle B, Sage E, Morris JH, Longabaugh W, Lopes C, et al. The Cytoscape Automation app article collection. F1000Res. 2018;7:800.

Article  PubMed Central  Google Scholar 

Mukherjee S, Kar A, Paul P, Dey S, Biswas A, Barik S. In Silico Integration of Transcriptome and Interactome Predicts an ETP-ALL-Specific Transcriptional Footprint that Decodes its Developmental Propensity. Front Cell Dev Biol. 2022;10:899752.

Article  PubMed Central  Google Scholar 

Mukherjee S, Kar A, Khatun N, Datta P, Biswas A, Barik S. Familiarity Breeds Strategy: In Silico Untangling of the Molecular Complexity on Course of Autoimmune Liver Disease-to-Hepatocellular Carcinoma Transition Predicts Novel Transcriptional Signatures. Cells-Basel. 2021;10(8):1917.

Article  CAS  Google Scholar 

De Carvalho TR, Giaretta AA, Teixeira BF, Martins LB. New bioacoustic and distributional data on Bokermannohyla sapiranga Brandao et al., 2012 (Anura: Hylidae): revisiting its diagnosis in comparison with B. pseudopseudis (Miranda-Ribeiro, 1937). ZOOTAXA. 2013;3746:383–92.

Article  Google Scholar 

Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. NUCLEIC ACIDS RES. 2020;48(D1):D127–31.

Article  CAS  Google Scholar 

Mon-Lopez D, Tejero-Gonzalez CM. Validity and reliability of the TargetScan ISSF Pistol & Rifle application for measuring shooting performance. Scand J Med Sci Sports. 2019;29(11):1707–12.

Article  Google Scholar 

Furio-Tari P, Tarazona S, Gabaldon T, Enright AJ, Conesa A. spongeScan: A web for detecting microRNA binding elements in lncRNA sequences. NUCLEIC ACIDS RES. 2016;44(W1):W176–80.

Article  CAS  PubMed Central  Google Scholar 

Yoon H, Lee S. Fatty Acid Metabolism in Ovarian Cancer: Therapeutic Implications. Int J Mol Sci. 2022;23(4):2170.

Article  MathSciNet  CAS  PubMed Central  Google Scholar 

Qi G, Mi Y, Shi X, Gu H, Brinton RD, Yin F. ApoE4 Impairs Neuron-Astrocyte Coupling of Fatty Acid Metabolism. CELL REP. 2021;34(1): 108572.

Article  CAS  PubMed Central  Google Scholar 

Yang K, Li J, Tao L. Purine metabolism in the development of osteoporosis. [Journal Article; Review] Biomed. Pharmacother. 2022;155:113784. https://doi.org/10.1016/j.biopha.2022.113784.

Article  CAS  Google Scholar 

Wang W, Cui J, Ma H, Lu W, Huang J. Targeting Pyrimidine Metabolism in the Era of Precision Cancer Medicine. Front Oncol. 2021;11:684961.

Article  CAS  PubMed Central  Google Scholar 

Dai M, Yang B, Chen J, Liu F, Zhou Y, Zhou Y, Xu Q, Jiang S, Zhao S, Li X, et al. Nuclear-translocation of ACLY induced by obesity-related factors enhances pyrimidine metabolism through regulating histone acetylation in endometrial cancer. Cancer Lett. 2021;513:36–49.

Article  CAS  Google Scholar 

Zhu CM, Lian XY, Bi YH, Hu CC, Liang YW, Li QS. Prognostic value of ribonucleotide reductase subunit M1 (RRM1) in non-small cell lung cancer: A meta-analysis. Clin Chim Acta. 2018;485:67–73.

Article  CAS  Google Scholar 

Reglero C, Dieck CL, Zask A, Forouhar F, Laurent AP, Lin WW, Albero R, Miller HI, Ma C, Gastier-Foster JM, et al. Pharmacologic Inhibition of NT5C2 Reverses Genetic and Nongenetic Drivers of 6-MP Resistance in Acute Lymphoblastic Leukemia. Cancer Discov. 2022;12(11):2646–65.

Article  CAS  PubMed Central  Google Scholar 

Lai JH, Wu DW, Wu CH, Hung LF, Huang CY, Ka SM, Chen A, Chang ZF, Ho LJ. Mitochondrial CMPK2 mediates immunomodulatory and antiviral activities through IFN-dependent and IFN-independent pathways. iScience. 2021;24(6):102498.

Article  ADS  CAS  PubMed Central  Google Scholar 

Chen Y, Wu L, Shi M, Zeng D, Hu R, Wu X, Han S, He K, Xu H, Shao X, et al. Electroacupuncture Inhibits NLRP3 Activation by Regulating CMPK2 After Spinal Cord Injury. FRONT IMMUNOL. 2022;13:788556.

Article  CAS  PubMed Central  Google Scholar 

Fan L, Liu J, Zhang Y, Zhang C, Shi B, Hu X, Chen W, Yin W, Wang J. High-dimensional Single-cell Analysis Delineates Peripheral Immune Signature of Coronary Atherosclerosis in Human Blood. Theranostics. 2022;12(15):6809–25.

Article  CAS  PubMed Central  Google Scholar 

Zayed MA. Immune Modulation of Coronary Atherosclerosis With Anticytokine Treatment. Circ Cardiovasc Imaging. 2020;13(9):e11451.

Article  Google Scholar 

Boccara F, Cohen A. Immune activation and coronary atherosclerosis in HIV-infected women: where are we now, and where will we go next? J Infect Dis. 2013;208(11):1729–31.

Article  Google Scholar 

Song K, Li L, Sun G, Wei Y. MicroRNA-381 regulates the occurrence and immune responses of coronary atherosclerosis via cyclooxygenase-2. Exp Ther Med. 2018;15(5):4557–63.

PubMed Central  Google Scholar 

Cortenbach K, Morales CD, Meek J, Gorris M, Staal A, Srinivas M, Jolanda MDVI, Fog BJ, van Kimmenade R. Topography of immune cell infiltration in different stages of coronary atherosclerosis revealed by multiplex immunohistochemistry. Int J Cardiol Heart Vasc. 2023;44:101111.

Google Scholar 

留言 (0)

沒有登入
gif