Blood metabolites mediate the impact of lifestyle factors on the risk of urolithiasis: a multivariate, mediation Mendelian randomization study

Stamatelou KK, Francis ME, Jones CA, Nyberg LM et al (2003) Time trends in reported prevalence of kidney stones in the United States: 1976-1994. Kidney Int. 5:1817–1823. https://doi.org/10.1046/j.1523-1755.2003.00917.x

Article  Google Scholar 

Skolarikos A, Straub M, Knoll T, Sarica K et al (2015) Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol. 4:750–763. https://doi.org/10.1016/j.eururo.2014.10.029

Article  Google Scholar 

Ruhayel Y, Tepeler A, Dabestani S, MacLennan S et al (2017) Tract sizes in miniaturized percutaneous nephrolithotomy: a systematic review from the European Association of Urology Urolithiasis Guidelines Panel. Eur Urol 2:220–235. https://doi.org/10.1016/j.eururo.2017.01.046

Article  Google Scholar 

Alexander RT (2023) Do thiazides reduce the risk of kidney-stone recurrence? N Engl J Med 9:841–842. https://doi.org/10.1056/NEJMe2300120

Article  Google Scholar 

Peerapen P, Thongboonkerd V (2023) Kidney stone prevention. Adv Nutr 3:555–569. https://doi.org/10.1016/j.advnut.2023.03.002

Article  CAS  Google Scholar 

D’Ambrosio V, Ferraro PM, Lombardi G, Friso S et al (2022) Unravelling the complex relationship between diet and nephrolithiasis: the role of nutrigenomics and nutrigenetics. Nutrients. https://doi.org/10.3390/nu14234961

Article  Google Scholar 

Yuan S, Larsson SC (2022) Coffee and caffeine consumption and risk of kidney stones: a Mendelian randomization study. Am J Kidney Dis 1:9-14.e11. https://doi.org/10.1053/j.ajkd.2021.04.018

Article  CAS  Google Scholar 

Zhang XZ, Lei XX, Jiang YL, Zhao LM et al (2023) Application of metabolomics in urolithiasis: the discovery and usage of succinate. Signal Transduct Target Ther. 1:41. https://doi.org/10.1038/s41392-023-01311-z

Article  CAS  Google Scholar 

Khamaysi A, Anbtawee-Jomaa S, Fremder M, Eini-Rider H et al (2019) Systemic succinate homeostasis and local succinate signaling affect blood pressure and modify risks for calcium oxalate lithogenesis. J Am Soc Nephrol. 3:381–392. https://doi.org/10.1681/asn.2018030277

Article  CAS  Google Scholar 

Griffin JL, Atherton H, Shockcor J, Atzori L (2011) Metabolomics as a tool for cardiac research. Nat Rev Cardiol 11:630–643. https://doi.org/10.1038/nrcardio.2011.138

Article  CAS  Google Scholar 

Onuh JO, Qiu H (2021) Metabolic profiling and metabolites fingerprints in human hypertension: discovery and potential. Metabolites. https://doi.org/10.3390/metabo11100687

Article  Google Scholar 

Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 7:451–459. https://doi.org/10.1038/nrm.2016.25

Article  CAS  Google Scholar 

Wang Y, Liu F, Sun L, Jia Y et al (2023) Association between human blood metabolome and the risk of breast cancer. Breast Cancer Res 1:9. https://doi.org/10.1186/s13058-023-01609-4

Article  CAS  Google Scholar 

Shin SY, Fauman EB, Petersen AK, Krumsiek J et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet. 6:543–550. https://doi.org/10.1038/ng.2982

Article  CAS  Google Scholar 

Kettunen J, Demirkan A, Würtz P, Draisma HH et al (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun. https://doi.org/10.1038/ncomms11122

Article  Google Scholar 

Michailidou K, Lindström S, Dennis J, Beesley J et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 7678:92–94. https://doi.org/10.1038/nature24284

Article  ADS  CAS  Google Scholar 

Ebrahim S, Davey Smith G (2008) Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? Hum Genet 1:15–33. https://doi.org/10.1007/s00439-007-0448-6

Article  Google Scholar 

Sleiman PM, Grant SF (2010) Mendelian randomization in the era of genomewide association studies. Clin Chem 5:723–728. https://doi.org/10.1373/clinchem.2009.141564

Article  CAS  Google Scholar 

Smith GD, Ebrahim S (2003) ’Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 1:1–22. https://doi.org/10.1093/ije/dyg070

Article  Google Scholar 

Wang H, Fan J, Yu C, Guo Y et al (2021) Consumption of tea, alcohol, and fruits and risk of kidney stones: a prospective cohort study in 0.5 million Chinese adults. Nutrients. https://doi.org/10.3390/nu13041119

Article  Google Scholar 

Liu CC, Huang SP, Wu WJ, Chou YH et al (2009) The impact of cigarette smoking, alcohol drinking and betel quid chewing on the risk of calcium urolithiasis. Ann Epidemiol. 8:539–545. https://doi.org/10.1016/j.annepidem.2009.02.006

Article  Google Scholar 

Aizezi X, Xie L, Xie H, Li J et al (2022) Epidemiological and clinical characteristics of stone composition: a single-center retrospective study. Urolithiasis. 1:37–46. https://doi.org/10.1007/s00240-021-01274-2

Article  CAS  Google Scholar 

Turney BW, Appleby PN, Reynard JM, Noble JG et al (2014) Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol 5:363–369. https://doi.org/10.1007/s10654-014-9904-5

Article  CAS  Google Scholar 

Littlejohns TJ, Neal NL, Bradbury KE, Heers H et al (2020) Fluid intake and dietary factors and the risk of incident kidney stones in UK biobank: a population-based prospective cohort study. Eur Urol Focus. 4:752–761. https://doi.org/10.1016/j.euf.2019.05.002

Article  Google Scholar 

Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA. 19:1925–1926. https://doi.org/10.1001/jama.2017.17219

Article  Google Scholar 

Abecasis GR, Altshuler D, Auton A, Brooks LD et al (2010) A map of human genome variation from population-scale sequencing. Nature. 7319:1061–1073. https://doi.org/10.1038/nature09534

Article  CAS  Google Scholar 

Staley JR, Blackshaw J, Kamat MA, Ellis S et al (2016) PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics. 20:3207–3209. https://doi.org/10.1093/bioinformatics/btw373

Article  CAS  Google Scholar 

Kamat MA, Blackshaw JA, Young R, Surendran P et al (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 22:4851–4853. https://doi.org/10.1093/bioinformatics/btz469

Article  CAS  Google Scholar 

Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 5:693–698. https://doi.org/10.1038/s41588-018-0099-7

Article  CAS  Google Scholar 

Liu M, Jiang Y, Wedow R, Li Y et al (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 2:237–244. https://doi.org/10.1038/s41588-018-0307-5

Article  CAS  Google Scholar 

Sudlow C, Gallacher J, Allen N, Beral V et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 3:e1001779. https://doi.org/10.1371/journal.pmed.1001779

Article  Google Scholar 

Julkunen H, Cichońska A, Tiainen M, Koskela H et al (2023) Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat Commun. 1:604. https://doi.org/10.1038/s41467-023-36231-7

Article  ADS  CAS  Google Scholar 

Kurki MI, Karjalainen J, Palta P, Sipilä TP et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 7944:508–518. https://doi.org/10.1038/s41586-022-05473-8

Article  ADS  CAS  Google Scholar 

Cai J, Wei Z, Chen M, He L et al (2022) Socioeconomic status, individual behaviors and risk for mental disorders: a Mendelian randomization study. Eur Psychiatry 1:e28. https://doi.org/10.1192/j.eurpsy.2022.18

Article  Google Scholar 

Liu N, Tan JS, Liu L, Li H et al (2023) Roles of obesity in mediating the causal effect of attention-deficit/hyperactivity disorder on diabetes. Epidemiol Psychiatr Sci. https://doi.org/10.1017/s2045796023000173

Article  Google Scholar 

Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 5:377–389. https://doi.org/10.1007/s10654-017-0255-x

Article  Google Scholar 

VanderWeele TJ (2016) Mediation analysis: a practitioner’s guide. Annu Rev Public Health. https://doi.org/10.1146/annurev-publhealth-032315-021402

Article  Google Scholar 

Relton CL, Davey Smith G (2012) Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 1:161–176. https://doi.org/10.1093/ije/dyr233

Article  Google Scholar 

Carter AR, Sanderson E, Hammerton G, Richmond RC et al (2021) Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol 5:465–478. https://doi.org/10.1007/s10654-021-00757-1

Article  Google Scholar 

MacKinnon DP, Fairchild AJ, Fritz MS (2007) Mediation analysis. Annu Rev Psychol. https://doi.org/10.1146/annurev.psych.58.110405.085542

Article  Google Scholar 

Wang Y, Ye C, Kong L, Zheng J et al (2023) Independent associations of education, intelligence, and cognition with hypertension and the mediating effects of cardiometabolic risk factors: a Mendelian randomization study. Hypertension 1:192–203. https://doi.org/10.1161/hypertensionaha.122.20286

Article  Google Scholar 

Lee YH, Huang WC, Lu CM, Tsai JY et al (2003) Stone recurrence predictive score (SRPS) for patients with calcium oxalate stones. J Urol 2(Pt 1):404–407. https://doi.org/10.1097/01.ju.0000072365.22948.30

留言 (0)

沒有登入
gif