Trends in sustainable materials for passive thermal management in 5G enabled portable electronics

Abo-Zahhad EM, Amine Hachicha A, Said Z et al (2022) Thermal management system for high, dense, and compact power electronics. Energy Convers Manag 268:115975. https://doi.org/10.1016/J.ENCONMAN.2022.115975

Article  Google Scholar 

Ahmed T, Bhouri M, Groulx D, White MA (2018) Passive thermal management of tablet PCs using phase change materials: continuous operation. Int J Therm Sci 134:101–115. https://doi.org/10.1016/j.ijthermalsci.2018.08.010

Article  Google Scholar 

Awasthi G, Sharma R, Sundarrajan S, Ramakrishna S, Kumar P (2022a) Progressive trends in hybrid material-based chemiresistive sensors for nitroaromatic compounds. Polymers 14:4643

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awasthi G, Shivgotra S, Nikhar S et al (2022b) Progressive trends on the biomedical applications of metal organic frameworks. Polymers 14:4710. https://doi.org/10.3390/POLYM14214710

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bar-Cohen A, Wang P (2012) Thermal management of on-chip hot spot. J Heat Transfer. https://doi.org/10.1115/1.4005708

Article  Google Scholar 

Bauer JM, Bohlin E (2022) Regulation and innovation in 5G markets. Telecomm Policy 46:102260. https://doi.org/10.1016/j.telpol.2021.102260

Article  Google Scholar 

Bianco V, de Rosa M, Vafai K (2022) Phase-change materials for thermal management of electronic devices. Appl Therm Eng 214:118839. https://doi.org/10.1016/J.APPLTHERMALENG.2022.118839

Article  Google Scholar 

Brindha R, Mohanraj R, Manojkumar P et al (2020) Hybrid electrochemical behaviour of La1-xCaxMnO3 nano perovskites and recycled polar interspersed graphene for metal-air battery system. J Electrochem Soc 167:120539. https://doi.org/10.1149/1945-7111/ABB34F

Article  CAS  Google Scholar 

Buonomano A, Barone G, Forzano C (2023) Latest advancements and challenges of technologies and methods for accelerating the sustainable energy transition. Energy Rep 9:3343–3355. https://doi.org/10.1016/j.egyr.2023.02.015

Article  Google Scholar 

Cao Y, Weng M, Mahmoud MHH et al (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267. https://doi.org/10.1007/S42114-022-00504-4/METRICS

Article  CAS  Google Scholar 

Chandel SS, Agarwal T (2017) Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew Sustain Energy Rev 67:581–596. https://doi.org/10.1016/j.rser.2016.09.070

Article  CAS  Google Scholar 

Chang X, Li S, Li N et al (2022) Marine biomass-derived, hygroscopic and temperature-responsive hydrogel beads for atmospheric water harvesting and solar-powered irrigation. J Mater Chem A Mater 10:18170–18184. https://doi.org/10.1039/D2TA04919H

Article  CAS  Google Scholar 

Chen X, Gao H, Hai G et al (2020) Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater 26:129–137. https://doi.org/10.1016/J.ENSM.2019.12.029

Article  Google Scholar 

Chen Z, Shao Z, Tang Y et al (2022) Study of the scale-up effect on the water sorption performance of MOF materials. ACS Materials Au. https://doi.org/10.1021/acsmaterialsau.2c00052

Article  PubMed  PubMed Central  Google Scholar 

Chun H, Lee E, Nam K et al (2021) First-principle-data-integrated machine-learning approach for high-throughput searching of ternary electrocatalyst toward oxygen reduction reaction. Chem Catalysis 1:855–869. https://doi.org/10.1016/J.CHECAT.2021.06.001

Article  CAS  Google Scholar 

Cui S, Hu Y, Huang Z et al (2014) Cooling performance of bio-mimic perspiration by temperature-sensitive hydrogel. Int J Therm Sci 79:276–282. https://doi.org/10.1016/j.ijthermalsci.2014.01.015

Article  CAS  Google Scholar 

Cui J, Li W, Wang Y et al (2022) Ultra-stable phase change coatings by self-cross-linkable reactive poly(ethylene glycol) and MWCNTs. Adv Funct Mater 32:2108000. https://doi.org/10.1002/adfm.202108000

Article  CAS  Google Scholar 

Dong W, Zhou F, Song X et al (2022) Coffee grounds-based hydrogel as a high-performance and durable evaporator for solar-driven freshwater generation. Mater Today Energy 30:101187. https://doi.org/10.1016/J.MTENER.2022.101187

Article  CAS  Google Scholar 

Guo X, Feng J (2022) Facilely prepare passive thermal management materials by foaming phase change materials to achieve long-duration thermal insulation performance. Compos B Eng 245:110203. https://doi.org/10.1016/j.compositesb.2022.110203

Article  Google Scholar 

Hao L, Liu N, Bai H et al (2022) High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels. J Colloid Interface Sci 608:840–852. https://doi.org/10.1016/J.JCIS.2021.10.035

Article  ADS  CAS  PubMed  Google Scholar 

Huang Z, Zhang X, Zhou M et al (2012) Bio-inspired passive skin cooling for handheld microelectronics devices. J Electron Packag Trans ASME 134:014501. https://doi.org/10.1115/1.4005908

Article  Google Scholar 

Kallenberger PA, Fröba M (2018) Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix. Commun Chem. https://doi.org/10.1038/s42004-018-0028-9

Article  Google Scholar 

Lee W, Seo M, Kim J (2022) Ultra-high thermal conductivity and mechanical properties of a paraffin composite as a thermal conductive phase change materials for novel heat management. Compos Sci Technol 220:109282. https://doi.org/10.1016/j.compscitech.2022.109282

Article  CAS  Google Scholar 

Liao Y, Li J, Li S, Yang X (2022) Super-elastic and shape-stable solid-solid phase change materials for thermal management of electronics. J Energy Storage 52:104751. https://doi.org/10.1016/j.est.2022.104751

Article  Google Scholar 

Liu L, Guo X, Lee C (2021) Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 88:106304. https://doi.org/10.1016/J.NANOEN.2021.106304

Article  CAS  Google Scholar 

Liu HR, Wang CX, Li BJ et al (2022a) Reversible sweat cooling on mobile electronic devices by metal-organic frameworks-based moisture sorption-desorption process. Mater Today Nano 18:100198. https://doi.org/10.1016/j.mtnano.2022.100198

Article  Google Scholar 

Liu X, Li P, Chen J et al (2022b) Hierarchically porous composite fabrics with ultrahigh metal–organic framework loading for zero-energy-consumption heat dissipation. Sci Bull (beijing) 67:1991–2000. https://doi.org/10.1016/j.scib.2022.09.014

Article  ADS  CAS  PubMed  Google Scholar 

Lyu M, Liu Y, Yang X et al (2023) Vanillin-based liquid crystalline polyimine thermosets and their composites for recyclable thermal management application. Compos B Eng 250:110462. https://doi.org/10.1016/J.COMPOSITESB.2022.110462

Article  CAS  Google Scholar 

Nasreen SAAN, Sundarrajan S, Syed Nizar SA et al (2013) In situ polymerization of PVDF-HEMA polymers: electrospun membranes with improved flux and antifouling properties for water filtration. Polym J 46:167–174. https://doi.org/10.1038/pj.2013.79

Article  CAS  Google Scholar 

Patel A, Mequanint K (2011) Hydrogel biomaterials. In: Fazel-Rezai R (ed) Biomedical Engineering - Frontiers and Challenges. InTech, UK. https://www.intechopen.com/chapters/17653

Pu S, Su J, Li L et al (2019) Bioinspired sweating with temperature sensitive hydrogel to passively dissipate heat from high-end wearable electronics. Energy Convers Manag 180:747–756. https://doi.org/10.1016/j.enconman.2018.11.027

Article  CAS  Google Scholar 

Pu S, Fu J, Liao Y et al (2020a) Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv Mater 32:e1907307. https://doi.org/10.1002/adma.201907307

Article  CAS  PubMed  Google Scholar 

Pu S, Liao Y, Chen K et al (2020b) Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett 20:3791–3797. https://doi.org/10.1021/acs.nanolett.0c00800

Article  ADS  CAS  PubMed  Google Scholar 

Qin Z, Li M, Flohn J, Hu Y (2021) Thermal management materials for energy-efficient and sustainable future buildings. Chem Comm 57:12236. https://doi.org/10.1039/D1CC05486D

Article  CAS  PubMed  Google Scholar 

Qin M, Feaugas O, Zu K (2022) Novel metal-organic framework (MOF) based phase change material composite and its impact on building energy consumption. Energy Build 273:112382. https://doi.org/10.1016/J.ENBUILD.2022.112382

Article  Google Scholar 

Rajagopalan K, Ramasubramanian B, Manojkumar K et al (2022) Organo-metallic electrolyte additive for regulating hydrogen evolution and self-discharge in Mg–air aqueous battery. New J Chem 46:19950–19962. https://doi.org/10.1039/D2NJ04488A

Article  CAS  Google Scholar 

Ramasubramanian B, Ramakrishna S (2023) What’s next for the sustainable development goals? Synergy and trade-offs in affordable and clean energy (SDG 7). Sustain Earth Rev 6:1–16. https://doi.org/10.1186/S42055-023-00069-0

Article  Google Scholar 

Ramasubramanian B, Subramanian S, Prasada Rayavarapu PR et al (2022a) Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy Environ Sci. https://doi.org/10.1039/D2EE02695C

Article  Google Scholar 

Ramasubramanian B, Chinglenthoiba C, Huiqing X et al (2022b) Sustainable Fe-MOF@carbon nanocomposite electrode for supercapacitor. Surf Interf 34:102397. https://doi.org/10.1016/J.SURFIN.2022.102397

Article  CAS  Google Scholar 

Ramasubramanian B, Rao RP, Chellappan V, Ramakrishna S (2022c) Towards sustainable fuel cells and batteries with an AI perspective. Sustainability 14:16001. https://doi.org/10.3390/SU142316001

Article 

留言 (0)

沒有登入
gif