Serum betaine and dimethylglycine in mid-pregnancy and the risk of gestational diabetes mellitus: a case-control study

P. Chen, S. Wang, J. Ji et al. Risk factors and management of gestational diabetes. Cell Biochem. Biophys. 71(2), 689–694 (2015)

Article  CAS  PubMed  Google Scholar 

E.C. Johns, F.C. Denison, J.E. Norman et al. Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol. Metab. 29(11), 743–754 (2018)

Article  CAS  PubMed  Google Scholar 

B. Wicklow, R. Retnakaran, Gestational diabetes mellitus and its implications across the life span. Diabetes Metab J 47(3), 333–344 (2023).

Article  PubMed  PubMed Central  Google Scholar 

W. Ye, C. Luo, J. Huang et al. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ 377, e67946 (2022)

Google Scholar 

M.S. Paulo, N.M. Abdo, R. Bettencourt-Silva et al. Gestational diabetes mellitus in Europe: a systematic review and meta-analysis of prevalence studies. Front. Endocrinol. 12, 691033 (2021)

Article  Google Scholar 

A. Sweeting, J. Wong, H.R. Murphy et al. A clinical update on gestational diabetes mellitus. Endocr. Rev. 43(5), 763–793 (2022)

Article  PubMed  PubMed Central  Google Scholar 

J. Leng, P. Shao, C. Zhang et al. Prevalence of gestational diabetes mellitus and its risk factors in Chinese pregnant women: a prospective population-based study in Tianjin, china. Plos One 10(3), e121029 (2015)

Article  Google Scholar 

H.D. Mcintyre, P. Catalano, C. Zhang et al. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 5(1), 47 (2019)

Article  PubMed  Google Scholar 

J. Wan, J. Ma, Efficacy of dietary supplements targeting gut microbiota in the prevention and treatment of gestational diabetes mellitus. Front. Microbiol. 13, 927883 (2022)

Article  PubMed  PubMed Central  Google Scholar 

M. Lever, S. Slow, The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 43(9), 732–744 (2010)

Article  CAS  PubMed  Google Scholar 

D. Fennema, I.R. Phillips, E.A. Shephard, Trimethylamine and trimethylamine n-oxide, a flavin-containing monooxygenase 3 (fmo3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos. 44(11), 1839–1850 (2016)

Article  CAS  PubMed  PubMed Central  Google Scholar 

P. Gatarek, J. Kaluzna-Czaplinska, Trimethylamine n-oxide (tmao) in human health. Excli. J. 20, 301–319 (2021)

PubMed  PubMed Central  Google Scholar 

Y. Heianza, D. Sun, X. Li et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the pounds lost trial. Gut 68(2), 263–270 (2019)

Article  CAS  PubMed  Google Scholar 

N. Friedrich, T. Skaaby, M. Pietzner et al. Identification of urine metabolites associated with 5-year changes in biomarkers of glucose homoeostasis. Diabetes Metab. 44(3), 261–268 (2018)

Article  CAS  PubMed  Google Scholar 

S. Qi, L. Liu, S. He et al. Trimethylamine n-oxide and related metabolites in the serum and risk of type 2 diabetes in the Chinese population: a case-control study. Diabetes Metab. Syndr. Obes. 16, 547–555 (2023)

Article  PubMed  PubMed Central  Google Scholar 

K. Szkudelska, T. Szkudelski, The anti-diabetic potential of betaine. Mechanisms of action in rodent models of type 2 diabetes. Biomed. Pharmacother. 150, 112946 (2022)

Article  CAS  PubMed  Google Scholar 

J. Du, L. Shen, Z. Tan et al. Betaine supplementation enhances lipid metabolism and improves insulin resistance in mice fed a high-fat diet. Nutrients 10(2), 131 (2018)

Article  PubMed  PubMed Central  Google Scholar 

X. Gao, X. Liu, J. Xu et al. Dietary trimethylamine n-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J. Biosci. Bioeng. 118(4), 476–481 (2014)

Article  CAS  PubMed  Google Scholar 

X. Huo, J. Li, Y. Cao et al. Trimethylamine n-oxide metabolites in early pregnancy and risk of gestational diabetes: a nested case-control study. J. Clin. Endocrinol. Metab. 104(11), 5529–5539 (2019)

Article  PubMed  PubMed Central  Google Scholar 

E. Barzilay, A. Moon, L. Plumptre et al. Fetal one-carbon nutrient concentrations may be affected by gestational diabetes. Nutr. Res. 55, 57–64 (2018)

Article  CAS  PubMed  Google Scholar 

I.B. Hirsch, Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care 38(8), 1610–1614 (2015)

Article  CAS  PubMed  Google Scholar 

M.J. Kim, H.S. Jung, Y. Hwang-Bo et al. Evaluation of 1, 5-anhydroglucitol as a marker for glycemic variability in patients with type 2 diabetes mellitus. Acta Diabetol. 50, 505–510 (2013)

Article  CAS  PubMed  Google Scholar 

D.A. American, Standards of medical care in diabetes—2014. Diabetes Care 37(Supplement_1), S14–S80 (2014)

Article  Google Scholar 

C. Steuer, P. Schütz, L. Bernasconi et al. Simultaneous determination of phosphatidylcholine-derived quaternary ammonium compounds by a lc–ms/ms method in human blood plasma, serum and urine samples. J. Chromatogr. B 1008, 206–211 (2016)

Article  CAS  Google Scholar 

M.F. Mujica-Coopman, A. Tan, T.H. Schroder et al. Serum betaine and dimethylglycine are higher in South Asian compared with European pregnant women in Canada, with betaine and total homocysteine inversely associated in early and midpregnancy, independent of ethnicity. J. Nutr. 149(12), 2145–2155 (2019)

Article  PubMed  Google Scholar 

U. Keller, C. van der Wal, G. Seliger et al. Carnitine status of pregnant women: effect of carnitine supplementation and correlation between iron status and plasma carnitine concentration. Eur. J. Clin. Nutr. 63(9), 1098–1105 (2009)

Article  CAS  PubMed  Google Scholar 

I.Y. Ozarda, G. Uncu, I.H. Ulus, Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch. Physiol. Biochem. 110(5), 393–399 (2002)

Article  Google Scholar 

X. Gong, Y. Du, X. Li et al. Maternal plasma betaine in middle pregnancy was associated with decreased risk of gdm in twin pregnancy: a cohort study. Diabetes Metab. Syndr. Obes. 14, 2495–2504 (2021)

Article  PubMed  PubMed Central  Google Scholar 

E. Kathirvel, K. Morgan, G. Nandgiri et al. Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am. J. Physiol. Gastr. L. 299(5), G1068–G1077 (2010)

Article  CAS  Google Scholar 

L. Xu, D. Huang, Q. Hu et al. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet. Brit. J. Nutr. 113(12), 1835–1843 (2015)

Article  CAS  PubMed  Google Scholar 

A. Ejaz, L. Martinez-Guino, A.B. Goldfine et al. Dietary betaine supplementation increases fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice. Diabetes 65(4), 902–912 (2016)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Zhang, Y. Qi, Z. Aluo et al. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Funct. 10(1), 216–223 (2019)

Article  CAS  PubMed  Google Scholar 

S.H. Zeisel, C.K. Da, Choline: an essential nutrient for public health. Nutr. Rev. 67(11), 615–623 (2009)

Article  PubMed  Google Scholar 

P.J. Raubenheimer, M.J. Nyirenda, B.R. Walker, A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 55(7), 2015–2020 (2006)

Article  CAS  PubMed  Google Scholar 

X. Li, Y. Chen, J. Liu et al. Serum metabolic variables associated with impaired glucose tolerance induced by high-fat-high-cholesterol diet in macaca mulatta. Exp. Biol. Med. (Maywood) 237(11), 1310–1321 (2012)

Article  CAS  PubMed  Google Scholar 

G. Wu, L. Zhang, T. Li et al. Choline deficiency attenuates body weight gain and improves glucose tolerance in ob/ob mice. J. Obes. 2012, 319172 (2012)

Article  PubMed  PubMed Central  Google Scholar 

Y.M. Chen, Y. Liu, R.F. Zhou et al. Associations of gut-flora-dependent metabolite trimethylamine-n-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci. Rep. 6, 19076 (2016)

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

R.L. Jacobs, Y. Zhao, D.P. Koonen et al. Impaired de novo choline synthesis explains why phosphatidylethanolamine n-methyltransferase-deficient mice are protected from diet-induced obesity. J. Biol. Chem. 285(29), 22403–22413 (2010)

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif