Causality of blood metabolites and metabolic pathways on Graves’ disease and Graves’ ophthalmopathy: a two-sample Mendelian randomization study

S.Y. Lee et al. Hyperthyroidism: A Review. JAMA 330(15), 1472–1483 (2023)

Article  CAS  PubMed  Google Scholar 

T.J. Smith et al. Graves’ Disease. N. Engl. J. Med. 375(16), 1552–1565 (2016)

Article  PubMed  Google Scholar 

T. Milo et al. Autoimmune thyroid diseases as a cost of physiological autoimmune surveillance. Trends Immunol. 44(5), 365–371 (2023)

Article  CAS  PubMed  Google Scholar 

J. Cao et al. The risk factors for Graves’ ophthalmopathy. Graefes Arch. Clin. Exp. Ophthalmol. 260(4), 1043–1054 (2022)

Article  PubMed  Google Scholar 

L. Bartalena et al. Epidemiology, Natural History, Risk Factors, and Prevention of Graves’ Orbitopathy. Front Endocrinol. 11, 615993 (2020)

Article  Google Scholar 

R. Ma et al. Insights Into Ferroptosis: Targeting Glycolysis to Treat Graves’ Orbitopathy. J. Clin. Endocrinol. Metab. 107(7), 1994–2003 (2022)

Article  PubMed  Google Scholar 

X. Chen et al. Influence of 4-week or 12-week glucocorticoid treatment on metabolic changes in patients with active moderate-to-severe thyroid-associated ophthalmopathy. Clin. Transl. Sci. 14(5), 1734–1746 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

H.O. Ueland et al. Systemic Activation of the Kynurenine Pathway in Graves Disease With and Without Ophthalmopathy. J. Clin. Endocrinol. Metab. 108(6), 1290–1297 (2023)

Article  PubMed  PubMed Central  Google Scholar 

S.K. Byeon et al. Lipidomic differentiation of Graves’ ophthalmopathy in plasma and urine from Graves’ disease patients. Anal. Bioanal. Chem. 410(27), 7121–7133 (2018)

Article  CAS  PubMed  Google Scholar 

D.Y. Ji et al. Comparative assessment of Graves’ disease and main extrathyroidal manifestation, Graves’ ophthalmopathy, by non-targeted metabolite profiling of blood and orbital tissue. Sci. Rep. 8(1), 9262 (2018)

Article  ADS  PubMed  PubMed Central  Google Scholar 

X. Zhang et al. Exploring blood metabolites and thyroid disorders: a bidirectional mendelian randomization study. Front Endocrinol. 14, 1270336 (2023)

Article  Google Scholar 

B.L. Pierce et al. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 178(7), 1177–1184 (2013)

Article  PubMed  PubMed Central  Google Scholar 

J. Bowden et al. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 40(4), 304–314 (2016)

Article  PubMed  PubMed Central  Google Scholar 

S. Burgess et al. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32(5), 377–389 (2017)

Article  PubMed  PubMed Central  Google Scholar 

A.F. Schmidt et al. Mendelian randomization with Egger pleiotropy correction and weakly informative Bayesian priors. Int J. Epidemiol. 47(4), 1217–1228 (2018)

Article  CAS  PubMed  Google Scholar 

C. Xue et al. Tryptophan metabolism in health and disease. Cell Metab. 35(8), 1304–1326 (2023)

Article  CAS  PubMed  Google Scholar 

Y. Chang et al. Tryptophan 2,3-dioxygenase 2 plays a key role in regulating the activation of fibroblast-like synoviocytes in autoimmune arthritis. Br. J. Pharm. 179(12), 3024–3042 (2022)

Article  CAS  Google Scholar 

K. Åkesson et al. Kynurenine pathway is altered in patients with SLE and associated with severe fatigue. Lupus Sci. Med. 5(1), e000254 (2018)

Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

Y. Park et al. Kynurenine pathway can be a potential biomarker of fatigue in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 41(12), 2363–2370 (2023)

PubMed  Google Scholar 

T. Bögl et al. Plasma Metabolomic Profiling Reveals Four Possibly Disrupted Mechanisms in Systemic Sclerosis. Biomedicines 10(3), 607 (2022)

Article  PubMed  PubMed Central  Google Scholar 

S.M.T. Isık et al. Relationship of tryptophan metabolites with the type and severity of multiple sclerosis. Mult. Scler. Relat. Disord. 77, 104898 (2023)

Article  PubMed  Google Scholar 

A. Krupa et al. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J. Mol. Sci. 22(18), 9879 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.H. Chu et al. Circulating plasma metabolites and risk of rheumatoid arthritis in the Nurses’ Health Study. Rheumatology 59(11), 3369–3379 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. Chen et al. Metabolomic profiling reveals amino acid and carnitine alterations as metabolic signatures in psoriasis. Theranostics 11(2), 754–767 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

X. Cheng et al. Long-Chain Acylcarnitines Induce Senescence of Invariant Natural Killer T Cells in Hepatocellular Carcinoma. Cancer Res. 83(4), 582–594 (2023)

Article  CAS  PubMed  Google Scholar 

U. Wenzel et al. Increased mitochondrial palmitoylcarnitine/carnitine countertransport by flavone causes oxidative stress and apoptosis in colon cancer cells. Cell Mol. Life Sci. 62(24), 3100–3105 (2005)

Article  CAS  PubMed  Google Scholar 

M.C. Mutomba et al. Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine. FEBS Lett. 478(1-2), 19–25 (2000)

Article  CAS  PubMed  Google Scholar 

B. Kisiel et al. Polymorphism of the oestrogen receptor beta gene (ESR2) is associated with susceptibility to Graves’ disease. Clin. Endocrinol. 68(3), 429–434 (2008)

Article  CAS  Google Scholar 

C.W. Cheng et al. Possible interplay between estrogen and the BAFF may modify thyroid activity in Graves’ disease. Sci. Rep. 11(1), 21350 (2021)

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

A.M. FitzPatrick, Is Estrogen a Missing Culprit in Thyroid Eye Disease? Sex Steroid Hormone Homeostasis Is Key to Other Fibrogenic Autoimmune Diseases - Why Not This One? Front Immunol. 13, 898138 (2022)

Article  CAS  PubMed  PubMed Central  Google Scholar 

H.B. Burch et al. Superoxide radical production stimulates retroocular fibroblast proliferation in Graves’ ophthalmopathy. Exp. Eye Res 65(2), 311–316 (1997)

Article  CAS  PubMed  Google Scholar 

T. Mano et al. Changes in free radical scavengers and lipid peroxide in thyroid glands of various thyroid disorders. Horm. Metab. Res 29(7), 351–354 (1997)

Article  CAS  PubMed  Google Scholar 

R. Du et al. Metabolic features of orbital adipose tissue in patients with thyroid eye disease. Front. Endocrinol. 14, 1151757 (2023)

Article  Google Scholar 

J. Zhou et al. Detection and Correlation Analysis of Serum Uric Acid in Patients with Thyroid-Associated Ophthalmopathy. Comput. Math. Methods Med. 2022, 8406834 (2022)

Article  PubMed  PubMed Central  Google Scholar 

N.F. Marques et al. Guanosine Protects Striatal Slices Against 6-OHDA-Induced Oxidative Damage, Mitochondrial Dysfunction, and ATP Depletion. Neurotox. Res. 35(2), 475–483 (2019)

Article  CAS  PubMed  Google Scholar 

B. Bellaver et al. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic. Signal 11(4), 571–580 (2015)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L.E. Bettio et al. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharm. Biochem. Behav. 127, 7–14 (2014)

Article  CAS  Google Scholar 

T.Y. Hou et al. The Role of Oxidative Stress and Therapeutic Potential of Antioxidants in Graves’ Ophthalmopathy. Biomedicines 9(12), 1871 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

C.C. Tsai et al. Increased oxidative DNA damage, lipid peroxidation, and reactive oxygen species in cultured orbital fibroblasts from patients with Graves’ ophthalmopathy: evidence that oxidative stress has a role in this disorder. Eye 24(9), 1520–1525 (2010)

留言 (0)

沒有登入
gif