Clonal Hematopoiesis and Cardiovascular Risk: Atherosclerosis, Thrombosis, and beyond

Hamostaseologie 2024; 44(01): 013-020
DOI: 10.1055/a-2219-6410

Benedetta Izzi

1   Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain

,

José J. Fuster

1   Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain

2   CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain

› Author Affiliations Funding Research work in our laboratory related to this topic is supported by grant PLEC2021-008194, funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”; by grant PID2021-126580OB-I00, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”; and by the “la Caixa” Foundation (ID 100010434) under agreement LCF/PR/HR22/00732. BI is supported by the program Atracción de Talento of the Comunidad de Madrid (GN: 2022-T1/BMD-23767). The CNIC is supported by the MICIN, the Instituto de Salud Carlos III, the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant number CEX2020-001041-S).
› Further Information Also available at   SFX Search  Permissions and Reprints Abstract

Acquired mutations that lead to clonal hematopoiesis have emerged as a new and potent risk factor for atherosclerotic cardiovascular disease and other cardiovascular conditions. Human sequencing studies and experiments in mouse models provide compelling evidence supporting that this condition, particularly when driven by specific mutated genes, contributes to the development of atherosclerosis by exacerbating inflammatory responses. The insights gained from these studies are paving the way for the development of new personalized preventive care strategies against cardiovascular disease. Furthermore, available evidence also suggests a potential relevance of these mutation in the context of thrombosis, an area requiring thorough investigation. In this review, we provide an overview of our current understanding of this emerging cardiovascular risk factor, focusing on its relationship to atherosclerosis and thrombosis.

Keywords CHIP - atherosclerosis - thrombosis - inflammation - TET2 Publication History

Received: 31 October 2023

Accepted: 11 November 2023

Article published online:
28 February 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
References 1 Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 2017; 18 (06) 331-344 2 Mustjoki S, Young NS. Somatic mutations in “benign” disease. N Engl J Med 2021; 384 (21) 2039-2052 3 Lee-Six H, Øbro NF, Shepherd MS. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018; 561 (7724) 473-478 4 Osorio FG, Rosendahl Huber A, Oka R. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep 2018; 25 (09) 2308-2316.e4 5 Welch JS, Ley TJ, Link DC. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150 (02) 264-278 6 Fuster JJ, Walsh K. Somatic mutations and clonal hematopoiesis: unexpected potential new drivers of age-related cardiovascular disease. Circ Res 2018; 122 (03) 523-532 7 Jaiswal S, Libby P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat Rev Cardiol 2020; 17 (03) 137-144 8 Zuriaga MA, Fuster JJ. Clonal hematopoiesis and atherosclerotic cardiovascular disease: a primer. Clin Investig Arterioscler 2023; 35 (01) 35-41 9 Steensma DP, Bejar R, Jaiswal S. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015; 126 (01) 9-16 10 Genovese G, Kähler AK, Handsaker RE. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371 (26) 2477-2487 11 Jaiswal S, Fontanillas P, Flannick J. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371 (26) 2488-2498 12 McKerrell T, Park N, Moreno T. et al; Understanding Society Scientific Group. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 2015; 10 (08) 1239-1245 13 Zink F, Stacey SN, Norddahl GL. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 2017; 130 (06) 742-752 14 Buscarlet M, Provost S, Zada YF. et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 2017; 130 (06) 753-762 15 Bick AG, Weinstock JS, Nandakumar SK. et al; NHLBI Trans-Omics for Precision Medicine Consortium. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 2020; 586 (7831) 763-768 16 Díez-Díez M, Amorós-Pérez M, de la Barrera J. et al. Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome. Geroscience 2023; 45 (02) 1231-1236 17 Libby P, Buring JE, Badimon L. et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5 (01) 56 18 Jaiswal S, Natarajan P, Silver AJ. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017; 377 (02) 111-121 19 Zekavat SM, Viana-Huete V, Matesanz N. et al. TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat Cardiovasc Res 2023; 2 (02) 144-158 20 Vlasschaert C, Heimlich JB, Rauh MJ, Natarajan P, Bick AG. Interleukin-6 receptor polymorphism attenuates clonal hematopoiesis-mediated coronary artery disease risk among 451 180 individuals in the UK biobank. Circulation 2023; 147 (04) 358-360 21 Gumuser ED, Schuermans A, Cho SMJ. et al. Clonal hematopoiesis of indeterminate potential predicts adverse outcomes in patients with atherosclerotic cardiovascular disease. J Am Coll Cardiol 2023; 81 (20) 1996-2009 22 Wang S, Hu S, Luo X. et al. Prevalence and prognostic significance of DNMT3A- and TET2- clonal haematopoiesis-driver mutations in patients presenting with ST-segment elevation myocardial infarction. EBioMedicine 2022; 78: 103964 23 Dorsheimer L, Assmus B, Rasper T. et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 2019; 4 (01) 25-33 24 Assmus B, Cremer S, Kirschbaum K. et al. Clonal haematopoiesis in chronic ischaemic heart failure: prognostic role of clone size for DNMT3A- and TET2-driver gene mutations. Eur Heart J 2021; 42 (03) 257-265 25 Pascual-Figal DA, Bayes-Genis A, Díez-Díez M. et al. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J Am Coll Cardiol 2021; 77 (14) 1747-1759 26 Kar SP, Quiros PM, Gu M. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat Genet 2022; 54 (08) 1155-1166 27 Kessler MD, Damask A, O'Keeffe S. et al; Regeneron Genetics Center, ; GHS-RGC DiscovEHR Collaboration. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 2022; 612 (7939) 301-309 28 Tall AR, Fuster JJ. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat Cardiovasc Res 2022; 1 (02) 116-124 29 Fidler TP, Xue C, Yalcinkaya M. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 2021; 592 (7853) 296-301 30 Rauch PJ, Gopakumar J, Silver AJ. et al. Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes. Nat Cardiovasc Res 2023; 2: 805-818 31 Fuster JJ, MacLauchlan S, Zuriaga MA. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 2017; 355 (6327) 842-847 32 Cobo I, Tanaka TN, Chandra Mangalhara K. et al. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity 2022; 55 (08) 1386-1401.e10 33 Ampomah PB, Cai B, Sukka SR. et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat Metab 2022; 4 (04) 444-457 34 Wang W, Liu W, Fidler T. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak  V617F mice. Circ Res 2018; 123 (11) e35-e47 35 Wolach O, Sellar RS, Martinod K. et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med 2018; 10 (436) eaan8292 36 Silvestre-Roig C, Braster Q, Wichapong K. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 2019; 569 (7755) 236-240 37 Franck G, Mawson TL, Folco EJ. et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 2018; 123 (01) 33-42 38 Molinaro R, Yu M, Sausen G. et al. Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovasc Res 2021; 117 (13) 2652-2663 39 Busque L, Patel JP, Figueroa ME. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44 (11) 1179-1181 40 Ito S, Shen L, Dai Q. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333 (6047) 1300-1303 41 Ko M, Huang Y, Jankowska AM. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010; 468 (7325) 839-843 42 He YF, Li BZ, Li Z. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011; 333 (6047) 1303-1307 43 Zhang Q, Zhao K, Shen Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 2015; 525 (7569) 389-393 44 Yalcinkaya M, Liu W, Thomas LA. et al. BRCC3-mediated NLRP3 deubiquitylation promotes inflammasome activation and atherosclerosis in Tet2 clonal hematopoiesis. Circulation 2023; 148 (22) 1764-1777 45 Liu W, Yalcinkaya M, Maestre IF. et al. Blockade of IL-6 signaling alleviates atherosclerosis in Tet2-deficient clonal hematopoiesis. Nat Cardiovasc Res 2023; 2 (06) 572-586 46 Fuster JJ, Zuriaga MA, Zorita V. et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep 2020; 33 (04) 108326 47 Sano S, Oshima K, Wang Y. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol 2018; 71 (08) 875-886 48 Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 2017; 267: 127-138 49 Svensson EC, Madar A, Campbell CD. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol 2022; 7 (05) 521-528 50 Ridker PM, Everett BM, Thuren T. et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131 51 Sehested TSG, Bjerre J, Ku S. et al. Cost-effectiveness of canakinumab for prevention of recurrent cardiovascular events. JAMA Cardiol 2019; 4 (02) 128-135 52 Miller J. FDA snubs Novartis bid to repurpose inflammation drug for heart attacks. Reuters. Accessed December 13, 2023 at: https://www.reuters.com/article/us-novartis-heart-disease-idUSKCN1MS2QY 53 European Medicines Agency. Canakinumab Novartis. https://www.ema.europa.eu/en/medicines/human/EPAR/canakinumab-novartis 54 Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res 2021; 128 (11) 1728-1746 55 Ridker PM. A test in context: high-sensitivity C-reactive protein. J Am Coll Cardiol 2016; 67 (06) 712-723 56 Bick AG, Pirruccello JP, Griffin GK. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 2020; 141 (02) 124-131 57 Busque L, Sun M, Buscarlet M. et al. High-sensitivity C-reactive protein is associated with clonal hematopoiesis of indeterminate potential. Blood Adv 2020; 4 (11) 2430-2438 58 Wu KK, Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med 1996; 47: 315-331 59 Moliterno AR, Ginzburg YZ, Hoffman R. Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood 2021; 137 (09) 1145-1153 60 Cordua S, Kjaer L, Skov V, Pallisgaard N, Hasselbalch HC, Ellervik C. Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population. Blood 2019; 134 (05) 469-479 61 Lamrani L, Lacout C, Ollivier V. et al. Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood 2014; 124 (07) 1136-1145 62 Edelmann B, Gupta N, Schnoeder TM. et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest 2018; 128 (10) 4359-4371 63 Abplanalp WT, Mas-Peiro S, Cremer S, John D, Dimmeler S, Zeiher AM. Association of clonal hematopoiesis of indeterminate potential with inflammatory gene expression in patients with severe degenerative aortic valve stenosis or chronic postischemic heart failure. JAMA Cardiol 2020; 5 (10) 1170-1175 64 Izzi B, Bonaccio M, de Gaetano G, Cerletti C. Learning by counting blood platelets in population studies: survey and perspective a long way after Bizzozero. J Thromb Haemost 2018; 16 (09) 1711-1721 65 Kamphuis P, van Bergen MGJM, van Zeventer IA. et al. Abnormal platelet counts and clonal hematopoiesis in the general population. HemaSphere 2023; 7 (01) e821 66 Veninga A, De Simone I, Heemskerk JWM, Cate HT, van der Meijden PEJ. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica 2020; 105 (08) 2020-2031 67 Wong WJ, Emdin C, Bick AG. et al; NHLBI TOPMed Hematology Working Group. Clonal haematopoiesis and risk of chronic liver disease. Nature 2023; 616 (7958) 747-754 68 Niroula A, Sekar A, Murakami MA. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med 2021; 27 (11) 1921-1927 69 Brown DW, Cato LD, Zhao Y. et al. Shared and distinct genetic etiologies for different types of clonal hematopoiesis. Nat Commun 2023; 14 (01) 5536 70 Izzi B, Gialluisi A, Gianfagna F. et al; On behalf of the Moli-Family Study Investigators. Platelet distribution width is associated with P-selectin dependent platelet function: results from the Moli-family cohort study. Cells 2021; 10 (10) 2737 71 Izzi B, Costanzo S, Gialluisi A. et al; On behalf of the Moli-sani Study Investigators. Platelet distribution width is associated with cardiovascular mortality in an adult general population. Bleeding, Thromb Vasc Biol 2023; 2 (03) 83 72 Beaulieu LM, Lin E, Mick E. et al. Interleukin 1 receptor 1 and interleukin 1β regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler Thromb Vasc Biol 2014; 34 (03) 552-564
 

留言 (0)

沒有登入
gif