Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th ed., text rev.). 2022.

Book  Google Scholar 

Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil. 2011;32:419–36.

Article  PubMed  Google Scholar 

Huang J, Zhu T, Qu Y, Mu D. Prenatal, perinatal and neonatal risk factors for intellectual disability: a systemic review and meta-analysis. PLoS One. 2016;11:e0153655.

Article  PubMed  PubMed Central  Google Scholar 

Milani D, Ronzoni L, Esposito S. Genetic advances in intellectual disability. J Pediatr Genet. 2015;4:125.

Article  PubMed  PubMed Central  Google Scholar 

Ilyas M, Mir A, Efthymiou S, Houlden H. The genetics of intellectual disability: advancing technology and gene editing. F1000Research. 2020:9.

Maia N, Nabais Sá MJ, Melo-Pires M, De Brouwer APM, Jorge P. Intellectual disability genomics: current state, pitfalls and future challenges. BMC Genomics. 2021;22:909.

Article  PubMed  PubMed Central  Google Scholar 

Schwartz CE, Louie RJ, Toutain A, Skinner C, Friez MJ, Stevenson RE. X-linked intellectual disability update 2022. Am J Med Genet A. 2023;191:144–59.

Article  CAS  PubMed  Google Scholar 

Ropers H-H, Hamel BCJ. X-linked mental retardation. Nat Rev Genet. 2005;6:46–57.

Article  CAS  PubMed  Google Scholar 

Fang H, Disteche CM, Berletch JB. X inactivation and escape: epigenetic and structural features. Front Cell Dev Biol. 2019;7:219.

Article  PubMed  PubMed Central  Google Scholar 

Loda A, Collombet S, Heard E. Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol. 2022;23:231–49.

Article  CAS  PubMed  Google Scholar 

Lyon MF. Gene action in the X-chromosome of the mouse (Mus muscufus L.). Nature. 1961;190:372–3.

Article  ADS  CAS  PubMed  Google Scholar 

Migeon BR. X-linked diseases: susceptible females. Genetics in Medicine. 2020;22:1156–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Posynick BJ, Brown CJ. Escape from X-chromosome inactivation: an evolutionary perspective. Front Cell Dev Biol. 2019;7:241.

Article  PubMed  PubMed Central  Google Scholar 

Berletch JB, Ma W, Yang F, Shendure J, Noble WS, Disteche CM, et al. Escape from X inactivation varies in mouse tissues. Bartolomei MS, editor. PLoS Genet. 2015;11:e1005079.

Article  PubMed  PubMed Central  Google Scholar 

Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–4.

Article  ADS  CAS  PubMed  Google Scholar 

Balaton BP, Cotton AM, Brown CJ. Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biol Sex Differ. 2015;6:35.

Article  PubMed  PubMed Central  Google Scholar 

Tukiainen T, Villani A-C, Yen A, Rivas MA, Marshall JL, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550:244–8.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Brand BA, Blesson AE, Smith-Hicks CL. The impact of X-chromosome inactivation on phenotypic expression of X-linked neurodevelopmental disorders. Brain Sci. 2021;11:904.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amir RE, Van Den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

Article  CAS  PubMed  Google Scholar 

Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol. 2017;13:37–51.

Article  CAS  PubMed  Google Scholar 

Neul JL, Benke TA, Marsh ED, Skinner SA, Merritt J, Lieberman DN, et al. The array of clinical phenotypes of males with mutations in methyl-CpG binding protein 2. Am J Med Genet B Neuropsychiatr Genet. 2019;180:55–67.

Article  CAS  PubMed  Google Scholar 

Sandweiss AJ, Brandt VL, Zoghbi HY. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. The Lancet Neurology. 2020;19:689–98.

Article  CAS  PubMed  Google Scholar 

Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16:261–75.

Article  CAS  PubMed  Google Scholar 

Skene PJ, Illingworth RS, Webb S, Kerr ARW, James KD, Turner DJ, et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010;37:457–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88:471–81.

Article  CAS  PubMed  Google Scholar 

Nan X, Ng H-H, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9.

Article  ADS  CAS  PubMed  Google Scholar 

Jones PL, Veenstra GJC, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–91.

Article  CAS  PubMed  Google Scholar 

Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science (New York, NY). 2008;320:1224.

Article  ADS  CAS  Google Scholar 

Zhao Y-T, Goffin D, Johnson B, Zhou Z. Loss of MeCP2 function is associated with distinct gene expression changes in the striatum. Neurobiol Dis. 2013;59:257–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson BS, Zhao Y-T, Fasolino M, Lamonica JM, Kim YJ, Georgakilas G, et al. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat Med. 2017;23:1203–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tudor M, Akbarian S, Chen RZ, Jaenisch R. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci USA. 2002;99:15536.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gabel HW, Kinde BZ, Stroud H, Gilbert CS, Harmin DA, Kastan NR, et al. Disruption of DNA methylation-dependent long gene repression in Rett syndrome. Nature. 2015;522:89.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Boxer LD, Renthal W, Greben AW, Whitwam T, Silberfeld A, Stroud H, et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol Cell. 2020;77:294–309.e9.

Article  CAS  PubMed  Google Scholar 

Connolly DR, Zhou Z. Genomic insights into MeCP2 function: a role for the maintenance of chromatin architecture. Curr Opin Neurobiol. 2019;59:174–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci. 2013;16:898–902.

Article  CAS  PubMed  Google Scholar 

Ito-Ishida A, Baker SA, Sillitoe RV, Sun Y, Zhou J, Ono Y, et al. MeCP2 levels regulate the 3D structure of heterochromatic foci in mouse neurons. J Neurosci. 2020;40:8746–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehrhart F, Jacobsen A, Rigau M, Bosio M, Kaliyaperumal R, Laros JFJ, et al. A catalogue of 863 Rett-syndrome-causing MECP2 mutations and lessons learned from data integration. Sci Data. 2021;8:10.

留言 (0)

沒有登入
gif