Deficient butyrate metabolism in the intestinal microbiome is a potential risk factor for recurrent kidney stone disease

Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141(1):1–7. https://doi.org/10.1007/BF00446731

Article  CAS  PubMed  Google Scholar 

Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW (2006) Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int 69(4):691–698. https://doi.org/10.1038/sj.ki.5000162

Article  CAS  PubMed  Google Scholar 

Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300(3):G461–G469. https://doi.org/10.1152/ajpgi.00434.2010

Article  CAS  PubMed  Google Scholar 

Hatch M, Freel RW (2013) A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis 41(5):379–384. https://doi.org/10.1007/s00240-013-0601-8

Article  CAS  PubMed  Google Scholar 

Arvans D, Jung YC, Antonopoulos D, Koval J, Granja I, Bashir M et al (2017) Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 28(3):876–887. https://doi.org/10.1681/ASN.2016020132

Article  CAS  PubMed  Google Scholar 

Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM et al (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19(6):1197–1203. https://doi.org/10.1681/ASN.2007101058

Article  CAS  PubMed  PubMed Central  Google Scholar 

Troxel SA, Sidhu H, Kaul P, Low RK (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17(3):173–176. https://doi.org/10.1089/089277903321618743

Article  PubMed  Google Scholar 

Tavasoli S, Alebouyeh M, Naji M, Shakiba Majd G, Shabani Nashtaei M, Broumandnia N et al (2020) Association of intestinal oxalate-degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study. BJU Int 125(1):133–143. https://doi.org/10.1111/bju.14840

Article  CAS  PubMed  Google Scholar 

Siener R, Bangen U, Sidhu H, Honow R, von Unruh G, Hesse A (2013) The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83(6):1144–1149. https://doi.org/10.1038/ki.2013.104

Article  CAS  PubMed  Google Scholar 

Sidhu H, Schmidt ME, Cornelius JG, Thamilselvan S, Khan SR, Hesse A et al (1999) Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10(Suppl 14):S334–S340

CAS  PubMed  Google Scholar 

Kumar R, Ghoshal UC, Singh G, Mittal RD (2004) Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: possible role in renal stone formation. J Gastroenterol Hepatol 19(12):1403–1409. https://doi.org/10.1111/j.1440-1746.2004.03510.x

Article  PubMed  Google Scholar 

Sikora P, Niedzwiadek J, Mazur E, Paluch-Oles J, Zajaczkowska M, Koziol-Montewka M (2009) Intestinal colonization with Oxalobacter formigenes and its relation to urinary oxalate excretion in pediatric patients with idiopathic calcium urolithiasis. Arch Med Res 40(5):369–373. https://doi.org/10.1016/j.arcmed.2009.05.004

Article  CAS  PubMed  Google Scholar 

Liu M, Zhang Y, Wu J, Gao M, Zhu Z, Chen H (2023) Causal relationship between kidney stones and gut microbiota contributes to the gut-kidney axis: a two-sample Mendelian randomization study. Front Microbiol 14:1204311. https://doi.org/10.3389/fmicb.2023.1204311

Article  PubMed  PubMed Central  Google Scholar 

Miller AW, Choy D, Penniston KL, Lange D (2019) Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int 96(1):180–188. https://doi.org/10.1016/j.kint.2019.02.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denburg MR, Koepsell K, Lee JJ, Gerber J, Bittinger K, Tasian GE (2020) Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease. J Am Soc Nephrol 31(6):1358–1369. https://doi.org/10.1681/ASN.2019101131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zampini A, Nguyen AH, Rose E, Monga M, Miller AW (2019) Defining dysbiosis in patients with urolithiasis. Sci Rep 9(1):5425. https://doi.org/10.1038/s41598-019-41977-6

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Miller AW, Dearing D (2013) The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens 2(4):636–652. https://doi.org/10.3390/pathogens2040636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60

Article  CAS  PubMed  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):1

Article  Google Scholar 

Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K et al (2016) MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102:3–11. https://doi.org/10.1016/j.ymeth.2016.02.020

Article  CAS  PubMed  Google Scholar 

Konwar KM, Hanson NW, Bhatia MP, Kim D, Wu SJ, Hahn AS et al (2015) MetaPathways v2.5: quantitative functional, taxonomic and usability improvements. Bioinformatics 31(20):3345–3347. https://doi.org/10.1093/bioinformatics/btv361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

Article  CAS  PubMed  Google Scholar 

Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26(4):493–500. https://doi.org/10.1093/bioinformatics/btp692

Article  CAS  PubMed  Google Scholar 

Miller IJ, Rees ER, Ross J, Miller I, Baxa J, Lopera J et al (2019) Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res 47(10):e57. https://doi.org/10.1093/nar/gkz148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aganezov SS, Alekseyev MA (2017) CAMSA: a tool for comparative analysis and merging of scaffold assemblies. BMC Bioinform 18(15):41–50

Google Scholar 

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilcoxon F (1946) Individual comparisons of grouped data by ranking methods. J Econ Entomol 39:269. https://doi.org/10.1093/jee/39.2.269

Article  CAS  PubMed  Google Scholar 

R Core Team (2017) R: a language and environment for statistical computing. https://www.R-project.org/

Hothorn T, Hornik K, van de Wiel M, Zeileis A (2008) Implementing a class of permutation tests: the coin package. J Stat Softw. 28:1–23

Article  Google Scholar 

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. (2022) Vegan: community ecology package. https://cran.r-project.org/web/packages/vegan/index.html

Anand S, Kaur H, Mande SS (2016) Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front Microbiol 7:1945. https://doi.org/10.3389/fmicb.2016.01945

Article  PubMed  PubMed Central  Google Scholar 

Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK et al (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35(8):725–731. https://doi.org/10.1038/nbt.3893

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller AW, Dale C, Dearing MD (2017) Microbiota diversification and crash induced by dietary oxalate in the mammalian herbivore Neotoma albigula. mSphere. https://doi.org/10.1128/mSphere.00428-17

留言 (0)

沒有登入
gif