Vascular dementia (VaD) is the second common cause of dementia after Alzheimer's disease, and deep learning has emerged as a critical tool in dementia research. The aim of this article is to highlight the current deep learning applications in VaD-related imaging biomarkers and diagnosis.
Recent findingsThe main deep learning technology applied in VaD using neuroimaging data is convolutional neural networks (CNN). CNN models have been widely used for lesion detection and segmentation, such as white matter hyperintensities (WMH), cerebral microbleeds (CMBs), perivascular spaces (PVS), lacunes, cortical superficial siderosis, and brain atrophy. Applications in VaD subtypes classification also showed excellent results. CNN-based deep learning models have potential for further diagnosis and prognosis of VaD.
SummaryDeep learning neural networks with neuroimaging data in VaD research represent significant promise for advancing early diagnosis and treatment strategies. Ongoing research and collaboration between clinicians, data scientists, and neuroimaging experts are essential to address challenges and unlock the full potential of deep learning in VaD diagnosis and management.
留言 (0)