Integrated Molecular and Histological Insights for Targeted Therapies in Mesenchymal Sinonasal Tract Tumors

Thawani R, et al. The contemporary management of cancers of the sinonasal tract in adults. CA Cancer J Clin. 2023;73(1):72–112. https://doi.org/10.3322/caac.21752.

Article  PubMed  Google Scholar 

Harvey RJ, Dalgorf DM. Chapter 10: Sinonasal malignancies. Am J Rhinol Allergy. 2013;27 Suppl 1:S35-8. https://doi.org/10.2500/ajra.2013.27.3894.

Article  PubMed  Google Scholar 

•• Bracigliano A, et al. Malignant sinonasal tumors: update on histological and clinical management. Curr Oncol. 2021;28(4):2420–38. https://doi.org/10.3390/curroncol28040222. This paper is significant for its comprehensive review of the rare and heterogeneous tumors of the nasal cavity and paranasal sinuses (TuNSs), highlighting the challenges in diagnosis and the lack of standardized treatment due to the rarity of these tumors. It emphasizes the importance of detailed histological and genetic understanding for effective treatment strategies, setting the stage for future research and personalized approaches in the management of TuNSs.

Article  PubMed  PubMed Central  Google Scholar 

Vahdani K, Rose GE. Ophthalmic presentation and outcomes for malignant sinonasal tumors. Ophthalmic Plast Reconstr Surg. 2022;38(1):29–33. https://doi.org/10.1097/iop.0000000000001972.

Article  PubMed  Google Scholar 

Lund VJ, et al. European position paper on endoscopic management of tumours of the nose, paranasal sinuses and skull base. Rhinol Suppl. 2010;22:1–143.

PubMed  Google Scholar 

Sánchez-Fernández P, et al. Next-generation sequencing for identification of actionable gene mutations in intestinal-type sinonasal adenocarcinoma. Sci Rep. 2021;11(1):2247. https://doi.org/10.1038/s41598-020-80242-z.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

•• Thompson LDR, Bishop JA. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Nasal Cavity, Paranasal Sinuses and Skull Base. Head Neck Pathol. 2022;16(1):1–18. https://doi.org/10.1007/s12105-021-01406-5. The 5th edition of the World Health Organization Classification of Head and Neck Tumours is crucial for its updated taxonomy and characterization of tumors in the nasal cavity, paranasal sinuses, and skull base, including the introduction of new entities like SWI/SNF complex-deficient and HPV-related multiphenotypic sinonasal carcinomas. This edition streamlines diagnostic categories and focuses on unique features in each anatomical site, providing a current snapshot of knowledge and encouraging further research into these diverse and rare tumors.

Article  PubMed  PubMed Central  Google Scholar 

Persky M, Tran T. Acquired vascular tumors of the head and neck. Otolaryngol Clin North Am. 2018;51(1):255–74. https://doi.org/10.1016/j.otc.2017.09.015.

Article  PubMed  Google Scholar 

Doody J, et al. The genetic and molecular determinants of juvenile nasopharyngeal angiofibroma: a systematic review. Ann Otol Rhinol Laryngol. 2019;128(11):1061–72. https://doi.org/10.1177/0003489419850194.

Article  PubMed  Google Scholar 

Boghani Z, et al. Juvenile nasopharyngeal angiofibroma: a systematic review and comparison of endoscopic, endoscopic-assisted, and open resection in 1047 cases. Laryngoscope. 2013;123(4):859–69. https://doi.org/10.1002/lary.23843.

Article  PubMed  Google Scholar 

Thompson LDR, Fanburg-Smith JC. Update on select benign mesenchymal and meningothelial sinonasal tract lesions. Head Neck Pathol. 2016;10(1):95–108. https://doi.org/10.1007/s12105-016-0697-6.

Article  PubMed  PubMed Central  Google Scholar 

Alshaikh NA, Eleftheriadou A. Juvenile nasopharyngeal angiofibroma staging: an overview. Ear Nose Throat J. 2015;94(6):E12-22. https://doi.org/10.1177/014556131509400615.

Article  PubMed  Google Scholar 

Guertl B, et al. Nasopharyngeal angiofibroma: an AM-Gene-Associated tumor? Hum Pathol. 2000;31(11):1411–3.

Article  CAS  PubMed  Google Scholar 

López F, et al. Nasal juvenile angiofibroma: current perspectives with emphasis on management. Head Neck. 2017;39(5):1033–45. https://doi.org/10.1002/hed.24696.

Article  PubMed  Google Scholar 

Uetz S, Crosby DL. Current management of juvenile nasopharyngeal angiofibroma. Curr Treat Options Allergy. 2020;7:335–46.

Article  Google Scholar 

Makek MS, Andrews JC, Fisch U. Malignant transformation of a nasopharyngeal angiofibroma. Laryngoscope. 1989;99(10 Pt 1):1088–92. https://doi.org/10.1288/00005537-198210000-00021.

Article  CAS  PubMed  Google Scholar 

Goepfert H, et al. Chemotherapy of locally aggressive head and neck tumors in the pediatric age group. Desmoid fibromatosis and nasopharyngeal angiofibroma. Am J Surg. 1982;144(4):437–44. https://doi.org/10.1016/0002-9610(82)90418-4.

Article  CAS  PubMed  Google Scholar 

Wenig BM. Atlas of head and neck pathology. Elsevier Health Sciences; 2015.

Google Scholar 

Perić A, et al. Immunohistochemistry in diagnosis of extranasopharyngeal angiofibroma originating from nasal cavity: case presentation and review of the literature. Acta Medica (Hradec Kralove). 2013;56(4):133–41. https://doi.org/10.14712/18059694.2014.8.

Article  PubMed  Google Scholar 

Beham A, et al. Expression of CD34-antigen in nasopharyngeal angiofibromas. Int J Pediatr Otorhinolaryngol. 1998;44(3):245–50. https://doi.org/10.1016/s0165-5876(98)00072-x.

Article  CAS  PubMed  Google Scholar 

Zhang M, et al. Biological distinctions between juvenile nasopharyngeal angiofibroma and vascular malformation: an immunohistochemical study. Acta Histochem. 2011;113(6):626–30. https://doi.org/10.1016/j.acthis.2010.07.003.

Article  CAS  PubMed  Google Scholar 

Starlinger V, et al. Laminin expression in juvenile angiofibroma indicates vessel’s early developmental stage. Acta Otolaryngol. 2007;127(12):1310–5. https://doi.org/10.1080/00016480701275220.

Article  CAS  PubMed  Google Scholar 

Schick B, et al. First evidence of genetic imbalances in angiofibromas. Laryngoscope. 2002;112(2):397–401. https://doi.org/10.1097/00005537-200202000-00035.

Article  CAS  PubMed  Google Scholar 

Schick B, et al. Numerical sex chromosome aberrations in juvenile angiofibromas: genetic evidence for an androgen-dependent tumor? Oncol Rep. 2003;10(5):1251–5.

CAS  PubMed  Google Scholar 

Schick B, et al. Comprehensive genomic analysis identifies MDM2 and AURKA as novel amplified genes in juvenile angiofibromas. Head Neck. 2007;29(5):479–87. https://doi.org/10.1002/hed.20535.

Article  PubMed  Google Scholar 

Brunner C, et al. Chromosomal alterations in juvenile angiofibromas. HNO. 2003;51(12):981–5. https://doi.org/10.1007/s00106-003-0857-3.

Article  CAS  PubMed  Google Scholar 

Heinrich UR, et al. Frequent chromosomal gains in recurrent juvenile nasopharyngeal angiofibroma. Cancer Genet Cytogenet. 2007;175(2):138–43. https://doi.org/10.1016/j.cancergencyto.2007.02.010.

Article  CAS  PubMed  Google Scholar 

Silveira SM, et al. Tumor microenvironmental genomic alterations in juvenile nasopharyngeal angiofibroma. Head Neck. 2012;34(4):485–92. https://doi.org/10.1002/hed.21767.

Article  MathSciNet  PubMed  Google Scholar 

• Calanca N, et al. Master regulators of epithelial-mesenchymal transition and WNT signaling pathways in juvenile nasopharyngeal angiofibromas. Biomedicines. 2021;9(9):1258. https://doi.org/10.3390/biomedicines9091258. This paper on STA is significant for its investigation into the role of EMT and WNT signaling pathways in this rare, invasive tumor affecting male adolescents. By identifying key differentially expressed genes and proteins, the study suggests potential druggable targets within these pathways, offering new insights for treating STA.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Noe O, et al. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev. 2021;15(1):534. https://doi.org/10.4081/oncol.2021.534. This paper is significant for elucidating the role of APC gene mutations in the development of colorectal cancer (CRC) and their association with the upregulation of the Wnt signaling pathway. It reviews the broader implications of APC mutations in various cancers, discusses the molecular mechanisms of carcinogenesis, and evaluates potential therapeutic targets within inflammatory and Wnt pathway signaling.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hankey W, Frankel WL, Groden J. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev. 2018;37(1):159–72. https://doi.org/10.1007/s10555-017-9725-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferouz AS, Mohr RM, Paul P. Juvenile nasopharyngeal angiofibroma and familial adenomatous polyposis: an association? Otolaryngol Head Neck Surg. 1995;113(4):435–9. https://doi.org/10.1016/s0194-59989570081-1.

Article  CAS  PubMed  Google Scholar 

Abraham SC, et al. Frequent beta-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol. 2001;158(3):1073–8. https://doi.org/10.1016/s0002-9440(10)64054-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ponti G, et al. Wnt pathway, angiogenetic and hormonal markers in sporadic and familial adenomatous polyposis-associated juvenile nasopharyngeal angiofibromas (JNA). Appl Immunohistochem Mol Morphol. 2008;16(2):173–8. https://doi.org/10.1097/PAI.0b013e31806bee12.

Article  CAS  PubMed  Google Scholar 

Zhang PJ, et al. Growth factors and receptors in juvenile nasopharyngeal angiofibroma and nasal polyps: an immunohistochemical study. Arch Pathol Lab Med. 2003;127(11):1480–4. https://doi.org/10.5858/2003-127-1480-gfarij.

Article  CAS  PubMed  Google Scholar 

Rippel C, Plinkert PK, Sch

留言 (0)

沒有登入
gif