Radiation-assisted synthesis of water soluble starch encapsulated copper nanoparticles and its applicability toward photocatalytic reduction of p-nitrophenol

Aissa MAB, Tremblay B, Andrieux-Ledier A, Maisonhaute E, Raouafi N, Courty A (2015) Copper nanoparticles of well-controlled size and shape: a new advance in synthesis and self-organization. Nanoscale 7:3189–3195. https://doi.org/10.1039/C4NR06893A

Article  CAS  PubMed  Google Scholar 

Ali ZI, Ghazy OA, Meligi G, Saleh HH, Bekhit M (2018a) Radiation-induced synthesis of copper/poly(vinyl alcohol) nanocomposites and their catalytic activity. Adv Polym Technol 37:365–375. https://doi.org/10.1002/adv.21675

Article  CAS  Google Scholar 

Ali ZI, Ghazy OA, Meligi G, Saleh HH, Bekhit M (2018b) Copper nanoparticles: synthesis, characterization and its application as catalyst for p-nitrophenol reduction. J Inorg Organomet Polym 28:1195–1205. https://doi.org/10.1007/s10904-018-0780-4

Article  CAS  Google Scholar 

Amador-Martínez JD, Flores-López NS, Hernandez-Martínez AR, Calderón-Ayala G, Bocarando-Chacon J, Cayetano-Castro N, Martínez-Suarez F, Leal-Pérez JE, Cortez-Valadez M, Britto Hurtado R (2023) Experimental and DFT studies of copper nanoparticles as SERS substrates. Appl Phys A 129:254. https://doi.org/10.1007/s00339-023-06531-2

Article  CAS  Google Scholar 

Bárta J, Pospíšil M, Čuba V (2010) Photo- and radiation-induced preparation of nanocrystalline copper and cuprous oxide catalysts. J Radioanal Nucl Chem 286:611–618. https://doi.org/10.1007/s10967-010-0748-5

Article  CAS  Google Scholar 

Bashir O, Hussain S, AL-Thabaiti SA, Khan Z, (2015) Synthesis, optical properties, stability, and encapsulation of Cu-nanoparticles. Spectrochim Acta, Part A 140:265–273. https://doi.org/10.1016/j.saa.2014.12.065

Article  CAS  Google Scholar 

Belloni J, Mostafavi M, Remita H et al (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22:1239–1255. https://doi.org/10.1039/A801445K

Article  CAS  Google Scholar 

Biswal J, Singh S, Rath MC, Ramnani SP, Sarkar SK, Sabharwal S (2010) Synthesis of CdSe quantum dots in PVA matrix by radiolytic methods. Int J Nanotechnol 7:1013–1026. https://doi.org/10.1504/IJNT.2010.034706

Article  CAS  Google Scholar 

Bozzini B, D’Urzo L, Re M, De Riccardis F (2008) Electrodeposition of Cu from acidic sulphate solutions containing cetyltrimethylammonium bromide (CTAB). J Appl Electrochem 38:1561–1569. https://doi.org/10.1007/s10800-008-9598-z

Article  CAS  Google Scholar 

Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) The State of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal Rev 50:492–531. https://doi.org/10.1080/01614940802480122

Article  CAS  Google Scholar 

Chang Y, Lye ML, Zeng HC (2005) Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 21:3746–3748. https://doi.org/10.1021/la050220w

Article  CAS  PubMed  Google Scholar 

Chen K, Xue D (2014) Reaction route to the crystallization of copper oxides. Appl Sci Convergence Technol 23:14–26. https://doi.org/10.5757/ASCT.2014.23.1.14

Article  CAS  Google Scholar 

Chung K, Bang J, Thacharon A et al (2022) Non-oxidized bare copper nanoparticles with surface excess electrons in air. Nat Nanotechnol 17:285–291. https://doi.org/10.1038/s41565-021-01070-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen H, Meyerstein D (1972) Mechanism of reduction of cobalt(III) and ruthenium(III) hexaammine complexes by several aliphatic radicals. J Am Chem Soc 94:6944–6948. https://doi.org/10.1021/ja00775a014

Article  CAS  Google Scholar 

Deka P, Deka RC, Bharali P (2014) In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New J Chem 38:1789–1793. https://doi.org/10.1039/c3nj01589k

Article  CAS  Google Scholar 

Feng D, Wei Z, Wang Q, Feng A, Zhang H (2022) Controllable synthesis of cobalt-containing nanosheet array-like ternary CuCoAl-LDH/rGO hybrids to boost the catalytic efficiency for 4-nitrophenol reduction. ACS Appl Mater Interfaces 14:24265–24280. https://doi.org/10.1021/acsami.2c01637

Article  CAS  PubMed  Google Scholar 

Gharibshahi E, Saion E (2012) Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int J Mol Sci 13:14723–14741. https://doi.org/10.3390/ijms131114723

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev 107:4797–4862. https://doi.org/10.1021/cr0680282

Article  CAS  PubMed  Google Scholar 

Ghosh S, Datta A, Saha A (2010) Single step synthesis of highly stable good quality water soluble semiconductor/dendrimer nanocomposites through irradiation route. Colloids Surf A 355:130–138. https://doi.org/10.1016/j.colsurfa.2009.12.007

Article  CAS  Google Scholar 

Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J Phys Chem C 118:18618–18625. https://doi.org/10.1021/jp5060606

Article  CAS  Google Scholar 

Guo Y, Cao F, Lei X, Mang L, Cheng S, Song J (2016) Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. Nanoscale 8:4852–4863. https://doi.org/10.1039/C6NR00145A

Article  CAS  PubMed  Google Scholar 

Hasanin M, Al Abboud MA, Alawlaqi MM, Abdelghany TM, Hashem AH (2022) Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: Antimicrobial, antioxidant, and anticancer activities. Biol Trace Elem Res 200:2099–2112. https://doi.org/10.1007/s12011-021-02812-0

Article  CAS  PubMed  Google Scholar 

Henglein A (2000) Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2-. J Phys Chem B 104:1206–1211. https://doi.org/10.1021/jp992950g

Article  CAS  Google Scholar 

Hervés P, Pérez-Lorenzo M, Liz-Marzán LM et al (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587. https://doi.org/10.1039/C2CS35029G

Article  PubMed  Google Scholar 

Huang HH, Yan FQ, Kek YM et al (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175. https://doi.org/10.1021/la9605495

Article  CAS  Google Scholar 

Joshi SS, Patil SF, Iyer V, Mahumuni S (1998) Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater 10:1135–1144. https://doi.org/10.1016/S0965-9773(98)00153-6

Article  CAS  Google Scholar 

Kapoor S, Palit DK, Mukherjee T (2002) Preparation, characterization and surface modification of Cu metal nanoparticles. Chem Phys Lett 355:383–387. https://doi.org/10.1016/S0009-2614(02)00293-2

Article  CAS  Google Scholar 

Kassaee MZ, Akhavan A, Sheikh N, Beteshobabrud R (2008) γ-Ray synthesis of starch-stabilized silver nanoparticles with antibacterial activities. Radiat Phys Chem 77:1074–1078. https://doi.org/10.1016/j.radphyschem.2008.06.010

Article  CAS  Google Scholar 

Klimov DI, Zezina EA, Zezin SB, Yang M, Wang F, Shvedunov VI, Feldman VI, Zezin AA (2018) Radiation-induced preparation of bimetallic nanoparticles in the films of interpolyelectrolyte complexes. Radiat Phys Chem 142:65–69. https://doi.org/10.1016/j.radphyschem.2017.02.034

Article  CAS  Google Scholar 

Korolkov IV, Mashentseva AA, Güven O, Gorin YG, Kozlovskiy AL, Zdorovets MV, Zhidkov IS, Cholach SO (2018) Electron/gamma radiation-induced synthesis and catalytic activity of gold nanoparticles supported on track-etched poly(ethylene terephthalate) membranes. Mater Chem Phys 217:31–39. https://doi.org/10.1016/j.matchemphys.2018.06.039

Article  CAS  Google Scholar 

Krklješ AN, Marinović-Cincović MT, Kacarevic-Popovic ZM, Nedeljković JM (2007) Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur Polym J 43:2171–2176. https://doi.org/10.1016/j.eurpolymj.2007.03.023

Article  CAS  Google Scholar 

Kumar A, Saxena A, De A et al (2013) Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions. RSC Adv 3:5015–5021. https://doi.org/10.1039/C3RA23455J

Article  CAS  Google Scholar 

Lai CC, Freeman GR (1990) Solvent effects on the reactivity of solvated electrons with charged solutes in methanol/water and ethanol/water mixed solvents. J Phys Chem 94:4891–4896. https://doi.org/10.1021/j100375a026

Article  CAS  Google Scholar 

Li H, Jo JK, Zhang L et al (2010) A general and efficient route to fabricate carbon nanotube-metal nanoparticles and carbon nanotube-inorganic oxides hybrids. Adv Funct Mater 20:3864–3873. https://doi.org/10.1002/adfm.201001067

Article  CAS  Google Scholar 

Liu C, Li G, Ma E, Zeng F, Wu T, Chen K, Fan P, Wen X, Li L, Qu Q (2022) Control-synthesized ultrafine Au nanoparticles by Aspergillus niger extracellular metabolites from SIM cards as high-effective 4-nitrophenol degradation catalyst. J Environ Chem Eng 10:108676. https://doi.org/10.1016/j.jece.2022.108676

Article  CAS  Google Scholar 

Machado TM, Peixoto LPF, Andrade GFS, Silva MAP (2022) Copper nanoparticles–containing tellurite glasses: an efficient SERS substrate. Mater Chem Phys 278:125597. https://doi.org/10.1016/j.matchemphys.2021.125597

Article  CAS  Google Scholar 

Markina NE, Ustinov SN, Zakharevich AM, Markin AV (2020) Copper nanoparticles for SERS-based determination of some cephalosporin antibiotics in spiked human urine. Anal Chim Acta 1138:9–17. https://doi.org/10.1016/j.aca.2020.09.016

留言 (0)

沒有登入
gif