CT image-based biomarkers for opportunistic screening of osteoporotic fractures: a systematic review and meta-analysis

Shen Y, Huang X, Wu J et al (2022) The global burden of osteoporosis, low bone mass, and its related fracture in 204 Countries and Territories, 1990–2019. Front Endocrinol 13:882241. https://doi.org/10.3389/fendo.2022.882241

Article  Google Scholar 

United Nations, Department of Economic and Social Affairs, Population Division (2017) World Population Ageing 2017 - Highlights (ST/ESA/SER.A/397). https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/May/un_2017_worldpopulationageing_report.pdf

Borgström F, Karlsson L, Ortsäter G et al (2020) Fragility fractures in Europe: burden, management and opportunities. Arch Osteoporos 15:59. https://doi.org/10.1007/s11657-020-0706-y

Article  PubMed  PubMed Central  Google Scholar 

Kanis JA, Melton LJ, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141. https://doi.org/10.1002/jbmr.5650090802

Article  CAS  PubMed  Google Scholar 

LeBoff MS, Greenspan SL, Insogna KL et al (2022) The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 33:2049–2102. https://doi.org/10.1007/s00198-021-05900-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Small RE (2005) Uses and limitations of bone mineral density measurements in the management of osteoporosis. MedGenMed 7:3

PubMed  PubMed Central  Google Scholar 

Curtis EM, Moon RJ, Harvey NC, Cooper C (2017) The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone 104:29–38. https://doi.org/10.1016/j.bone.2017.01.024

Article  PubMed  PubMed Central  Google Scholar 

Gao L, Moodie M, Watts JJ, Wang L (2023) Cost-effectiveness of osteoporosis opportunistic screening using computed tomography in China. Value Health Reg Issues 38:38–44. https://doi.org/10.1016/j.vhri.2023.06.001

Article  PubMed  Google Scholar 

Sollmann N, Kirschke JS, Kronthaler S et al (2022) Imaging of the osteoporotic spine – quantitative approaches in diagnostics and for the prediction of the individual fracture risk. Rofo 194:1088–1099. https://doi.org/10.1055/a-1770-4626

Article  PubMed  Google Scholar 

Löffler MT, Sollmann N, Mei K et al (2020) X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 31:233–250. https://doi.org/10.1007/s00198-019-05212-2

Article  PubMed  Google Scholar 

Link TM, Kazakia G (2020) Update on imaging-based measurement of bone mineral density and quality. Curr Rheumatol Rep 22:13. https://doi.org/10.1007/s11926-020-00892-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sollmann N, Löffler MT, El Husseini M et al (2022) Automated opportunistic osteoporosis screening in routine computed tomography of the spine: comparison with dedicated quantitative CT. J Bone Mineral Res 37:1287–1296. https://doi.org/10.1002/jbmr.4575

Article  CAS  Google Scholar 

Löffler MT, Jacob A, Scharr A et al (2021) Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur Radiol 31:6069–6077. https://doi.org/10.1007/s00330-020-07655-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Löffler MT, Sollmann N, Burian E et al (2021) Opportunistic osteoporosis screening reveals low bone density in patients with screw loosening after lumbar semi-rigid instrumentation: a case-control study. Front Endocrinol 11:552719. https://doi.org/10.3389/fendo.2020.552719

Article  Google Scholar 

Sollmann N, Becherucci EA, Boehm C et al (2021) Texture analysis using CT and chemical shift encoding-based water-fat MRI can improve differentiation between patients with and without osteoporotic vertebral fractures. Front Endocrinol (Lausanne) 12:778537. https://doi.org/10.3389/fendo.2021.778537

Article  PubMed  Google Scholar 

Aggarwal V, Maslen C, Abel RL et al (2021) Opportunistic diagnosis of osteoporosis, fragile bone strength and vertebral fractures from routine CT scans; a review of approved technology systems and pathways to implementation. Ther Adv Musculoskelet 13:1759720X2110240. https://doi.org/10.1177/1759720X211024029

Article  Google Scholar 

Li Y-L, Wong K-H, Law MW-M et al (2018) Opportunistic screening for osteoporosis in abdominal computed tomography for Chinese population. Arch Osteoporos 13:76. https://doi.org/10.1007/s11657-018-0492-y

Article  PubMed  Google Scholar 

Pickhardt PJ, Pooler BD, Lauder T et al (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588. https://doi.org/10.7326/0003-4819-158-8-201304160-00003

Article  PubMed  PubMed Central  Google Scholar 

Ziemlewicz TJ, Maciejewski A, Binkley N et al (2016) Opportunistic quantitative CT bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison with DXA in 355 adults. J Bone Miner Res 31:1835–1840. https://doi.org/10.1002/jbmr.2856

Article  CAS  PubMed  Google Scholar 

Zhu Y, Triphuridet N, Yip R et al (2021) Opportunistic CT screening of osteoporosis on thoracic and lumbar spine: a meta-analysis. Clin Imaging 80:382–390. https://doi.org/10.1016/j.clinimag.2021.08.005

Article  PubMed  Google Scholar 

Zysset PK, Dall’Ara E, Varga P, Pahr DH (2013) Finite element analysis for prediction of bone strength. BoneKEy Reports 2. https://doi.org/10.1038/bonekey.2013.120

Merlijn T, Swart KMA, Van Der Horst HE et al (2020) Fracture prevention by screening for high fracture risk: a systematic review and meta-analysis. Osteoporos Int 31:251–257. https://doi.org/10.1007/s00198-019-05226-w

Article  CAS  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ n71. https://doi.org/10.1136/bmj.n71

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210. https://doi.org/10.1186/s13643-016-0384-4

Article  PubMed  PubMed Central  Google Scholar 

Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36. https://doi.org/10.1148/radiology.143.1.7063747

Article  CAS  PubMed  Google Scholar 

Whiting PF (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

Article  PubMed  Google Scholar 

Tay W-L, Chui C-K, Ong S-H, Ng AC-M (2012) Osteoporosis screening using areal bone mineral density estimation from diagnostic CT images. Acad Radiol 19:1273–1282. https://doi.org/10.1016/j.acra.2012.05.017

Article  PubMed  Google Scholar 

Khoo BCC, Brown K, Cann C et al (2009) Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 20:1539–1545. https://doi.org/10.1007/s00198-008-0820-y

Article  CAS  PubMed  Google Scholar 

Pickhardt PJ, Bodeen G, Brett A et al (2015) Comparison of Femoral Neck BMD Evaluation Obtained Using Lunar DXA and QCT With Asynchronous Calibration From CT Colonography. J Clin Densitom 18:5–12. https://doi.org/10.1016/j.jocd.2014.03.002

Article  PubMed  Google Scholar 

Viechtbauer W, Cheung MW-L (2010) Outlier and influence diagnostics for meta-analysis. Res Synth Method 1:112–125. https://doi.org/10.1002/jrsm.11

Article  Google Scholar 

Cheung MW-L (2014) Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychol Methods 19:211–229. https://doi.org/10.1037/a0032968

Article  PubMed  Google Scholar 

Pustejovsky JE, Tipton E (2022) Meta-analysis with robust variance estimation: expanding the range of working models. Prev Sci 23:425–438. https://doi.org/10.1007/s11121-021-01246-3

Article  PubMed  Google Scholar 

Bhattacharya P, Altai Z, Qasim M, Viceconti M (2019) A multiscale model to predict current absolute risk of femoral fracture in a postmenopausal population. Biomech Model Mechanobiol 18:301–318. https://doi.org/10.1007/s10237-018-1081-0

Article  PubMed  Google Scholar 

Allaire BT, Lu D, Johannesdottir F et al (2019) Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int 30:323–331. https://doi.org/10.1007/s00198-018-4716-1

Article  CAS  PubMed  Google Scholar 

Johannesdottir F, Allaire B, Kopperdahl DL et al (2021) Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location. Osteoporos Int 32:261–269. https://doi.org/10.1007/s00198-020-05528-4

Article  CAS  PubMed  Google Scholar 

Keyak JH, Sigurdsson S, Karlsdottir GS et al (2013) Effect of finite element model loading condition on fracture risk assessment in men and women: The AGES-Reykjavik study. Bone 57:18–29. https://doi.org/10.1016/j.bone.2013.07.028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qasim M, Farinella G, Zhang J et al (2016) Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporos Int 27:2815–2822. https://doi.org/10.1007/s00198-016-3597-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enns-Bray WS, Bahaloo H, Fleps I et al (2019) Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone 120:25–37.

留言 (0)

沒有登入
gif