Harnessing Deep Learning to Detect Bronchiolitis Obliterans Syndrome from Chest CT

Abstract

Bronchiolitis Obliterans Syndrome (BOS), a fibrotic airway disease following lung transplantation, conventionally relies on pulmonary function tests (PFTs) for diagnosis due to limitations of CT images. Thus far, deep neural networks (DNNs) have not been used for BOS detection. We optimized a DNN for detection of BOS solely using CT scans by integrating an innovative co-training method for enhanced performance in low-data scenarios. The novel auxiliary task is to predict the temporal precedence of CT scans of BOS patients. We tested our method using CT scans at various stages of inspiration from 75 post-transplant patients, including 26 with BOS. The method achieved a ROC-AUC of 0.90 (95% CI: 0.840-0.953) in distinguishing BOS from non-BOS CT scans. Performance correlated with disease progression, reaching 0.88 ROC-AUC for stage I, 0.91 for stage II, and an outstanding 0.94 for stage III BOS. Importantly, performance parity existed between standard and high-resolution scans. Particularly noteworthy is the DNN's ability to predict BOS in at-risk patients (FEV1 between 80% and 90% of best FEV1) with a robust 0.87 ROC-AUC (CI: 0.735-0.974). Using techniques for visually interpreting the results of deep neural networks, we reveal that our method is especially sensitive to hyperlucent areas compatible with air-trapping or bronchiectasis. Our approach shows the potential to improve BOS diagnosis, enabling early detection and management. Detecting BOS from low-resolution scans reduces radiation exposure and using scans at any stage of respiration makes our method more accessible. Additionally, we demonstrate that techniques that limit overfitting are essential to unlocking the power of DNNs in scenarios with scarce training data. Our method may enable clinicians to use DNNs in studies where only a modest number of patients is available.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study was supported by FWF Austrian Science Fund Lise Meitner grant number M3374, and SNSF grants CRSK-3_190526 and 310030_204938.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Commission cantonale d'ethique de la recherche sur l'etre humain CER-VD gave ethical approval for this work.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors

留言 (0)

沒有登入
gif