Comparative Analysis of the Efficient Energy Supply of Microrobots Based on Graphene Phase-Change Materials

V. G. Gradetskii, M. M. Knyaz’kov, L. F. Fomin, and V. G. Chashchukhin, Mechanics of Miniature Robots (Nauka, Moscow, 2010) [in Russian].

Google Scholar 

Microbiorobotics. Biologically Inspired Microscale Robotic Systems. Micro and Nano Technologies (Elsevier, 2017).

A. Zhukov, N. Bolotnik, and V. Chashukhin, “A walking robot with termomechanical actuators for the inspection of photo-electric cells of solar arrays for spacecraft,” in Proceedings of the 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines “Clawar 2020,” Moscow, 2020.

N. N. Bolotnik, V. G. Gradetskii, A. A. Zhukov, et al., Cosmic Res. 57, 115–120 (2019).

Article  Google Scholar 

F. V Vasil’ev., A. A. Zhukov, and M. A. Korobkov, in Proceedings of the 32nd International Scientific and Technical Conference “Extreme Robotics” (RA FORTUNA, St. Petersburg, 2021), p. 41.

I. G. Goryacheva, N. N. Bolotnik, A. A. Zhukov, et al., RF Patent No. 2699209 (2018).

F. L. Chernous’ko, I. P. Smirnov, D. V. Kozlov, et al. Prototype for RF patent No. 154708, Byull. Izobret., No. 25 (2015).

I. P. Smirnov, D. V. Kozlov, A. A. Zhukov, et al., RF Patent No. 2566454 (2015).

A. S. Dmitriev, A. A. Zhukov, and A. A. Nikitin, in Proceedings of the 32nd International Scientific and Technical Conference “Extreme Robotics,” St. Petersburg, 2022, p. 328.

P. Bhushan and C. Tomlin, “An insect-scale untethered laser-powered jumping microrobot” (2019). arXiv:1908.03282v1.

T. Nugent and J. Kare, Proc. SPIE 8045, 514 (2011). https://doi.org/10.1117/12.886169

Article  Google Scholar 

T. Ozaki, N. Ohta, T. Jimbo, and K. Hamaguchi, Nat. Electron. 4, 845 (2021). https://doi.org/10.1038/s41928-021-00669-8

Article  Google Scholar 

E. Helbling and R. Wood, ASME. Appl. Mech. Rev. 70, 010801 (2018). https://doi.org/10.1115/1.4038795

A. Le, L. Truong, T. Quyen, et al., EAI Endorsed Trans. Ind. Networks Intell. Syst. 7, 5 (2020). https://doi.org/10.4108/eai.31-1-2020.162831

Article  Google Scholar 

Y. Yan, W. Shi, and X. Zhang, EURASIP J. Wireless Commun. Networking 2020, 67 (2020). https://doi.org/10.1186/s13638-020-01679-4

Article  Google Scholar 

A. Datas, D. Chubb, and A. Veeraragavan, Sol. Energy 96, 33 (2013). https://doi.org/10.1016/j.solener.2013.07.002

Article  Google Scholar 

G. Chen, J. Appl. Phys. 109, 104908 (2011). https://doi.org/10.1063/1.3583182

A. Eftekhari, Sustainable Energy Fuels 1, 2053 (2017). https://doi.org/10.1039/C7SE00350A

Article  CAS  Google Scholar 

S. Farhad and A. Nazari, Int. J. Energy Res. 43, 931 (2019). https://doi.org/10.1002/er.4332

Article  CAS  Google Scholar 

Y. Ye, Y. Shi, N. Ca, et al., J. Power Sources 199, 227 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.027

Article  CAS  Google Scholar 

L. Qiu, Y. Ouyang, Y. Feng, and X. Zhang, Renewable Energy 140, 513 (2019). https://doi.org/10.1016/j.renene.2019.03.088

Article  CAS  Google Scholar 

A. S. Dmitriev, Introduction to Nanothermal Physics (BINOM, Moscow, 2015) [in Russian].

Google Scholar 

A. S. Dmitriev, and A. V. Klimenko, Teploenergetika 2, 1 (2020). https://doi.org/10.1134/S0040363620020010

Article  Google Scholar 

L. Chen, J. Liu, X. Fang, and Z. Zhang, Sol. Energy Mater. Sol. Cells 163, 125 (2017). https://doi.org/10.1016/j.solmat.2017.01.024

Article  CAS  Google Scholar 

Z. Luo, W. Cheng, W. Wei, et al., J. Heat. Mass Trans. 75, 262 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.072

Article  Google Scholar 

J. Liu, C. Xu, L. Chen, et al., Sol. Energy Mater. Sol. Cells 170, 219 (2017). https://doi.org/10.1016/j.solmat.2017.05.062

Article  CAS  Google Scholar 

G. Han, H. Li, and J. Grossman, Nat. Commun. 8, 1446 (2017). https://doi.org/10.1038/s41467-017-01608-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. Yin, S. Cao, and J. Liu, Sol. Energy Mater. Sol. Cells 194, 252 (2019). https://doi.org/10.1016/j.egyr.2020.10.022

Article  CAS  Google Scholar 

Y. Wang, M. Dai, H. Wu, et al., Nano Energy, Part A 90, 106499 (2021). https://doi.org/10.1016/j.nanoen.2021.106499

J. Jiang, Z. Yang, A. Ferreira, and L. Zhang, Adv. Intell. Syst. 4, 2100279 (2022). https://doi.org/10.1002/aisy.202100279L

G. Yang, J. Bellingham, P. Dupont, et al., Sci. Robot. 3, 7650 (2018). https://doi.org/10.1126/scirobotics.aar7650

Article  Google Scholar 

J. Kim and C. Moon, Int. J. Adv. Smart Convergence 8, 98 (2019). https://doi.org/10.7236/IJASC.2019.8.1.98

Article  Google Scholar 

A. Junaid, A. Konoiko, Y. Zweiri, et al., Energies 10, 803 (2017). https://doi.org/10.3390/en10060803

Article  Google Scholar 

C. Rae and F. Bradley, Renewable Sustainable Energy Rev. 16, 6497 (2012). https://doi.org/10.1016/j.rser.2012.08.002

Article  Google Scholar 

N. Kashiri, A. Abate, S. Abram, et al., Front. Rob. AI 5, 129 (2018). https://doi.org/10.3389/frobt.2018.00129

Article  Google Scholar 

A. A. Zhukov, M. A. Kudrov, S. D. Zavodskov, et al., Radiotekh. Elektron. 62, 623 (2017).

Google Scholar 

N. N. Bolotnik, V. G. Chashchukhin, V. G. Gradetsky, et al., “Prospects and possibilities of using thermomechanical microrobots for solving technological tasks in space,” in Proceedings of the 21st International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines “CLAWAR 2018,” Panama City, Panama, 2018 (CLAWAR Association, London, 2018), p. 265.

留言 (0)

沒有登入
gif