Risk of wrist fracture, estimated by the load-to-strength ratio, declines following sleeve gastrectomy in adolescents and young adults

Goulding A et al (1998) Bone mineral density in girls with forearm fractures. J Bone Miner Res 13:143–148

Article  CAS  PubMed  Google Scholar 

Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr 139:509–515

Article  CAS  PubMed  Google Scholar 

Taylor ED et al (2006) Orthopedic complications of overweight in children and adolescents. Pediatrics 117:2167–2174

Article  PubMed  Google Scholar 

Kessler J, Koebnick C, Smith N, Adams A (2013) Childhood obesity is associated with increased risk of most lower extremity fractures pediatrics. Clin Orthop Relat Res 471:1199–1207

Article  PubMed  Google Scholar 

Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

Article  CAS  PubMed  Google Scholar 

Moon RJ et al (2015) Longitudinal changes in lean mass predict pQCT measures of tibial geometry and mineralisation at 6–7 years. Bone 75:105–110

Article  PubMed  PubMed Central  Google Scholar 

Hetherington-Rauth M et al (2018) Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls. Bone 113:144–150

Article  PubMed  PubMed Central  Google Scholar 

Kindler JM et al (2017) Obese versus normal-weight late-adolescent females have inferior trabecular bone microarchitecture: a pilot case-control study. Calcif Tissue Int 101:479–488

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell DM et al (2018) Trabecular bone morphology correlates with skeletal maturity and body composition in healthy adolescent girls. J Clin Endocrinol Metab 103:336–345

Article  PubMed  Google Scholar 

Singhal V et al (2019) Suboptimal bone microarchitecure in adolescent girls with obesity compared to normal-weight controls and girls with anorexia nervosa. Bone 122:246–253

Article  PubMed  PubMed Central  Google Scholar 

Samelson EJ et al (2019) Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 7:34–43

Article  PubMed  Google Scholar 

Riggs BL et al (2006) Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J Bone Miner Res 21:315–323

Article  PubMed  Google Scholar 

Melton LJ et al (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22:1442–1448

Article  PubMed  Google Scholar 

Bouxsein ML et al (2007) Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res 22:825–831

Article  PubMed  Google Scholar 

Dufour AB et al (2012) The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporos Int 23:513–520

Article  CAS  PubMed  Google Scholar 

Johnston JD, Kawalilak CE, Lanovaz JL, Kontulainen SA (2019) A single-spring model predicts the majority of variance in impact force during a fall onto the outstretched hand. J Biomech 90:149–152

Article  PubMed  Google Scholar 

Singhal V et al (2022) Load-to-strength ratio at the radius is higher in adolescent and young adult females with obesity compared to normal-weight controls. Bone 164:116515

Singhal V, Youssef S, Misra M (2020) Use of sleeve gastrectomy in adolescents and young adults with severe obesity. Curr Opin Pediatr 32:547–553

Article  PubMed  PubMed Central  Google Scholar 

Griggs CL et al (2018) National Trends in the Use of Metabolic and Bariatric Surgery among Pediatric Patients with Severe Obesity. JAMA Pediatrics 172:1191–1192 Preprint at https://doi.org/10.1001/jamapediatrics.2018.3030

Inge TH et al (2016) Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med 374:113–123

Article  CAS  PubMed  Google Scholar 

Beavers KM, Greene KA, Yu EW (2020) MANAGEMENT OF ENDOCRINE DISEASE: Bone complications of bariatric surgery: updates on sleeve gastrectomy, fractures, and interventions. Eur J Endocrinol 183:R119–R132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misra M, Bredella MA (2021) Bone metabolism in adolescents undergoing bariatric surgery. J Clin Endocrinol Metab 106:326–336

Article  PubMed  Google Scholar 

Mitchell DM et al (2022) Skeletal effects of sleeve gastrectomy in adolescents and young adults: a two-year longitudinal study. J Clin Endocrinol Metab. https://doi.org/10.1210/CLINEM/DGAC634

Article  PubMed  PubMed Central  Google Scholar 

Huber FA et al (2023) Two-year skeletal effects of sleeve gastrectomy in adolescents with obesity assessed with quantitative CT and MR spectroscopy. Radiology 307(5):e223256

Pratt JSA et al (2018) ASMBS pediatric metabolic and bariatric surgery guidelines, 2018. Surg Obes Relat Dis 14:882–901

Article  PubMed  PubMed Central  Google Scholar 

Boutroy S et al (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399

Article  PubMed  Google Scholar 

Pistoia W et al (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848

Article  CAS  PubMed  Google Scholar 

Misra M et al (2020) Bone outcomes following sleeve gastrectomy in adolescents and young adults with obesity versus non-surgical controls. Bone 134

Farr JN, Dimitri P (2017) The impact of fat and obesity on bone microarchitecture and strength in children. Calcif Tissue Int 100:500–513

Article  CAS  PubMed  Google Scholar 

Paccou J et al (2022) A comparison of changes in bone turnover markers after gastric bypass and sleeve gastrectomy, and their association with markers of interest. Surg Obes Relat Dis 18:373–383

Article  PubMed  Google Scholar 

Khalid SI, Omotosho PA, Spagnoli A, Torquati A (2020) Association of bariatric surgery with risk of fracture in patients with severe obesity. JAMA Netw Open 3(6):e207419

Rousseau C et al (2016) Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ (Online) 354:i3794

Yu EW, Lee MP, Landon JE, Lindeman KG, Kim SC (2017) Fracture risk after bariatric surgery: Roux-en-Y gastric bypass versus adjustable gastric banding. J Bone Miner Res 32:1229–1236

Article  PubMed  Google Scholar 

Axelsson KF et al (2018) Fracture risk after gastric bypass surgery: a retrospective cohort study. J Bone Miner Res 33:2122–2131

Article  PubMed  Google Scholar 

Yu EW, Kim SC, Sturgeon DJ, Lindeman KG, Weissman JS (2019) Fracture risk after Roux-en-Y gastric bypass vs adjustable gastric banding among medicare beneficiaries. JAMA Surg 154:746–753

Article  PubMed  PubMed Central  Google Scholar 

Lindeman KG et al (2018) Longitudinal 5-year evaluation of bone density and microarchitecture after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 103:4104–4112

Article  PubMed  PubMed Central  Google Scholar 

Hansen S, Jørgensen NR, Hermann AP, Støving RK (2020) Continuous decline in bone mineral density and deterioration of bone microarchitecture 7 years after Roux-en-Y gastric bypass surgery. Eur J Endocrinol 182:303–311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindeman KG et al (2020) Bone density and trabecular morphology at least 10 years after gastric bypass and gastric banding. J Bone Miner Res 35:2132–2142

Article  CAS  PubMed  Google Scholar 

Hofsø D et al (2021) Bone mineral density and turnover after sleeve gastrectomy and gastric bypass: a randomized controlled trial (Oseberg). J Clin Endocrinol Metab 106:501–511

Article  PubMed  Google Scholar 

McCormack SE et al (2017) Association between linear growth and bone accrual in a diverse cohort of children and adolescents. JAMA Pediatr 171(9):e171769

Gabel L, Macdonald HM, Nettlefold LA, McKay HA (2018) Sex-, ethnic-, and age-specific centile curves for pQCT- and HR-pQCT-derived measures of bone structure and strength in adolescents and young adults. J Bone Miner Res 33:987–1000

Article  CAS  PubMed  Google Scholar 

Seeman E et al (1989) Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 320:554–558

Article  CAS  PubMed  Google Scholar 

Ferrari S, Rizzoli R, Slosman D, Bonjour J-P (1998) Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 83:358–361

CAS  PubMed  Google Scholar 

Hernandez CJ, Beaupré GS, Carter DR (2003) A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 14:843–847

Article  CAS  PubMed 

留言 (0)

沒有登入
gif